数据分析
超级菜鸟怎么学习数据分析?数据挖掘、工具、技术、所需知识点等?
如何找一条船舶从开工到完工时间的时间段中75%进度的数据?
各位前辈,小弟想参与BI的项目
数据预处理后,预测结果的取值是否还需要还原?
求问,有人知道随机森林里面子树变量个数选择上有什么讲究吗?
手机自动化测试IDE ----- 手把手教你用Airtest模拟器来连接手机
dcpeng 发表了文章 • 2021-06-30 09:37
干货|Sqlite数据库知识必知必会(上篇)
dcpeng 发表了文章 • 2021-06-05 21:29
sqlserver 2016 代理作业 无法运行 Analysis Services 处理的ssis包报错
需要做数据汇报,有什么好的工具推荐?
用友BI产品哪里找免费版的试用?
大数据分析一般用什么工具分析?
关于Excel 连接SSAS 权限控制问题
安利一款神奇——教你轻松下载百度网盘超大文件
dcpeng 发表了文章 • 2021-04-25 18:47
SSAS 如何连接PostgreSQL数据库
HDP中Metrics Collector服务启动后立即终止
很多还没有采用电子病历系统的医院逐步的上这些系统。而大医院,例如包括有附一、附二等医院的那些医院,很多都有自己的数据中心,构建电子病历系统,使得医院的每一个科室能够将病... 显示全部 »
很多还没有采用电子病历系统的医院逐步的上这些系统。而大医院,例如包括有附一、附二等医院的那些医院,很多都有自己的数据中心,构建电子病历系统,使得医院的每一个科室能够将病历信息、患者信息统一到一个平台中去,这些数据可以直接进入大数据平台,或者先存在传统的大型数据库,然后通过某些数据抽取方式把数据定时同步到大数据平台。
我所知道的一些医疗大数据项目中,医生是一定会参与到电子病历数据采集的事情上去,为他们自己的疾病课题研究先攒数据。
随着大数据的发展,目前有非常多的医院、甚至企业都在做这件事情。
seng 回答了问题 • 2016-06-21 15:41 • 3 个回复
有一些企业有专业的爬虫工程师,也有很多企业连IT人员都没有。但是对于互联网大量数据的渴求不变,这个就需要采集工具,那么这些企业是否愿意收费来使用?
不过我觉得少量的提供一些免费的比较好。
不过我觉得少量的提供一些免费的比较好。
http://yixf.name/2011/03/14/formatr格式化r代码/
http://yixf.name/2011/03/14/formatr格式化r代码/
所以对我们是个机会,只要坚持学习,早晚会脱颖而出的。
所以对我们是个机会,只要坚持学习,早晚会脱颖而出的。
regan 回答了问题 • 2017-08-30 10:23 • 2 个回复
spark从mysql读取数据,根据日期放在hive里面,产生了好多小文件,现在通过DataSet.coalesce()合并小文件,导致写入速度非常慢,各位大神有啥其他方法
说到超级菜鸟:女生,二本,市场营销专业,别说vlookup连sum是啥都不知道,代码一个字母都不会,平时工作连电脑都不咋敲,这个应该够超级菜了。(确实是个小姐姐,没有性别歧视的意思哈)。唯一的优势就是颜值还行。小姐姐毕业后去了... 显示全部 »
说到超级菜鸟:女生,二本,市场营销专业,别说vlookup连sum是啥都不知道,代码一个字母都不会,平时工作连电脑都不咋敲,这个应该够超级菜了。(确实是个小姐姐,没有性别歧视的意思哈)。唯一的优势就是颜值还行。小姐姐毕业后去了某个银行信用卡中心做业务员。某段时候我在做银行项目,广泛体验各个银行的信用卡,于是就这么机缘巧合的认识了。100%出于想了解银行发卡模式,而不是被小姐姐颜值吸引的原因,我很认真的和她聊了平时的工作情况。得知这个小姐姐业绩非常的好,团队Ace,每月激活卡100张以上,个人收入估算接2w以上了。
有意思的是,小姐姐对我的工作也很感兴趣。她问我:“如何能转行到后台做工作?”我很惊讶,为什么收入这么好还想转数据分析呢?不觉得没钱途吗?要知道很多号称“数据分析师”都没有一年25万的。小姐姐表示:因为跑业务太辛苦了,风吹日晒,而且一天不做一天没收入,这日子没法过下去了。“还是你们后台好,对着电脑敲敲就有钱拿,为啥不做”。100%出于分享知识的考虑,我和小姐姐做了深度沟通。发现对于已经工作的同学而言,转行有着至少三大难关。
第一,曰:没精力。作为一个Ace销售,小姐姐性格非常独立坚强。想要她放下工作,关门谢客,再交上几万块培训费去读个培训班是非常不现实的。人家已经习惯了照顾家人而不是被人照顾。而且处于工作敏感性,她也不信任那些培训机构的销售:“还交一万九年薪五十万就业,他自己怎么不交一万九还在这卖课?”好吧,这个逻辑简直无懈可击
第二,曰:没基础。我也试着向小姐姐介绍sas,不过真的是一个字都看不懂。“我在学校都没搞懂,现在咋可能搞懂”好吧,又是一个无懈可击的逻辑。那试着介绍一下spss吧,可视化戳戳戳总行了吧。结果发现光安装就卡了好久。而且一点统计基础都没有的话,也不知道戳出来是个啥。
第三,曰:没记性。我转了一些文章让小姐姐看,基本上前脚看后脚忘。因为工作中用不到。实际上,我自己也有这种感觉。工作中用不到的东西,即使对着学了忘的也特别快。因为平时不用啊,就靠对着课本练,脱离书就是个呆子。
咋办?我认真思考了问题的关键:如果能找到一个工作中就能用到的例子开始训练就好了。真是完全没有基础的话,一上来就列一堆信息、公式、概念只会把人绕晕。如果能找个简单的方法让她理解到:什么是数据、什么是分析,后续如何做数据分析就是水到渠成的事。刚好我当时正在做相关的项目,优秀的销售和死蠢的销售都接触过,这一点极大的启发了我后来的思路。
我试着启发小姐姐的思路,从一个简单的问题开始:什么样的顾客容易成功?小姐姐瞬间打开了话匣子,列举一堆例子。OK,这里先不急着讲完所有故事,我拿出了银行信用卡申请表,问道:假设把刚才故事里的顾客特征对应到表上需要填的这些空格,该如何填?小姐姐愣了一下,然后开始笑话这些申请表能记录的信息太少,很多信息需要销售直观判断。OK,我继续引导:所以这里就有两类信息:一类容易记录的、客观的、格式化的数据,一类难记录的、主观的、个性化的数据。然而,后台的工作人员远在千里之外,他们无法直面顾客,他们只能通过能记录的数据来判断,考虑做什么样的政策,出什么样产品。所以,如果你真想转到后台去的话,你就得想办法:要么从现有的有限的数据中得出结论,要么把主观的数据合理记录下来。
小姐姐似乎想到了什么,然后开始说:那样的话,这里哪几个字段可能最有用处,这里哪些字段其实都是销售们瞎填的。如果真需要添加的话,能不能添加1,2,3,4个维度,而且为了防止一线的销售们瞎搞,还可以配合比如工牌照片、人车合照等等办法。我们边聊,边拿出一张值,把可以用的、有问题的、需要添加的字段都记录下来,并且标上数据格式,填写规范等等。完成以后,我开始介绍:这就是后台部门面临的数据库的简单样式,有字段、字段属性、数据来源、数据真实性、数据清理等等等问题。小姐姐似乎一下恍然大悟,这样讲比一上来讲什么数据仓储容易理解多了。
于是我趁胜追击,开始引导一下阶段问题:你看,你一个月能做100多张卡,有没有计算过办哪些卡,总收入更高?(不同信用卡对应的提成,是否伴随贷款,是否开自动还款业务都会影响提成收入)。小姐姐开始认真考虑不同产品组合下自己的收入。之前也有考虑过,但从没有认真计算过数据,都是自己粗略估算或者听营销中心的日报。有了之前的基础,我们开始分解日报。利用一张最基础的含用户、卡信息的excel表,开始试着做数据统计,计算收入。因为和收入有关,所以小姐姐计算起来格外起劲。并且数据透视表、求和、平均值、if等公式用几次就会了。
于是我趁胜追击*2,开始引导一下阶段问题:你看,这些卡片销售数据和顾客特征结合起来,是不是可以看出来哪些顾客容易办哪种卡?(不是所有的申请表都会被批准的,多多少少都会退一批,填写规范下,过审率一般六成左右)。小姐姐一下兴趣被调了起来,因为被退卡是一线销售非常深恶痛绝的事,因此我们继续拿基础excel表练习,这次是练习交叉表。开始交叉分类看用户特征,试着用不同维度交叉,看哪些类型用户更容易被pass。尝试几次后,竟然发现销售们日常总结的审批规律,有一些还真有道理,甚至还反推出一些审批的潜规则。
于是我趁胜追击*3,开始引导一下阶段问题:你看,你作为这么厉害的销售,肯定有些人会比你差。你和他们比,他们差在哪里。小姐姐又一下兴趣大开,讲了一堆很具体的行为差异。OK,我们回归一下,把这些具体事件中的可以用数据量化的部分截取出来,把那些不能用数据量化的部分,看看是否能有字段记录。这样再归纳以后,就找出来衡量销售行为的基本指标,进而导出了分析团队业绩的基本思路。(实际上,我直接分享了部分项目结论给她。自己解读数据是个很好的尝试思路,但是一个0基础自学者,自己总结结论还是太难了)。
完成这几步以后,小姐姐已经基本具备了数据分析的初级能力,还差临门一脚:简历要怎么投?因为数据分析范围实在太宽泛了,即使做了训练,以小姐姐的能力投开发类岗位也实在是天方夜谭。好在银行里各个分行、营销中心都有数据专员的岗位,这些岗位主要任务就是做销售数据分解和解读,小姐姐的能力非常适合。最后临门一脚,帮小姐姐包装一下简历,一顿饭的功夫,突出一下在分析问题上的经验和能力,之后便一投即中。虽然薪资降低了不少,但是还是如愿做了不用风吹日晒的后台工作。
后来,听说小姐姐嫁了人。俺也在太太的监督下,清空了所有这种100%出于学习分享目的讲过一大堆话的小姐姐的联系方式。后续的情况不得而知。但这确实是我指导过的,最有挑战性、最0基础、也最快速实现转行的例子了。前后用了没俩月。回想起来,小姐姐虽然数学和代码基础差,但有几个优势:
第一,业务能力强。对业务流程非常熟悉,有丰富实战经验。这样很容易找出业务中的问题,就容易找到分析问题的思路,看到数据也容易明白含义。第二,思维逻辑性好。比如第一步总结顾客特征,她可以很快理解我的用意,把那些一个个具体的人,归纳成:39岁、小企业主、500万经营收入、本地人等等字段。数据分析是以字段为基础的,这一步如果理解不了,就真的深入不下去了。我也见过很多思维方式特别感性的人,就是卡在这一步,始终无法把一个具体事情抽象成一组数据,后边的分析也就无法基于数据进行了。他们更多是基于感情、直觉做判断,把数据分析的过程视为一个黑箱,等着听结论。第三,动手能力强。Excel操作几次就会了,没有耽搁很多时间反复练习。第四,公关能力强。营销中心、卡中心她认识不少人,直接拿到了内部一些数据表做练习,进步非常快。这个真的是用模拟数据无法比拟的优势了。
而我只是起到一个穿针引线的作用。找了一个好的切入点,吊起来她的兴趣,让她能坚持思考下去,而不是半途而废。或者装着一脑袋和工作完全不相关的东西,完全不知道学了有什么用。其实数据分析,是数据+分析组成的。技术上如何生成数据是一个切入点。业务上如何做分析也是一个切入点。能从问题出发的好处,就是能以始为终,很快找到思路。当然,这是以能理解数据字段、数据来源为前提的。
当然,这是极特别的个案,其实但凡有一些excel、sql基础,上路都不会这么艰难,也不需要那么强公关能力或者颜值什么的。即使看起来行业差的特别远,即使岗位看起来特别奇怪也没有关系。因为数据分析其实是职场的一项基本技能,在哪里都有用,在哪里都能练习。
比如我遇到过一个三线城市做拖拉机设计的男同学。他想转数据分析,但满眼望去,都是“互联网数据分析XXX”。感觉自己的工作跟数据分析,跟互联网很遥远。然而我不这么认为。我提示他:你做设计,也分创新设计和改良设计。如果改良,你要改哪些款?为什么选这些款?是销量不好,还是故障率高,还是用户口碑差?如果是销量不好,怎么判定好?数据从哪里来?标准怎么定?
拖拉机哥认真想想,忽然觉得恍然大悟:是哦!平时会走访市场,会看不同省市区的销量,还会看售后服务的数据,就是从来没认真思考过这些。平时工作都是拍脑袋,看着哪个月问题多了就做个市场走访,收集收集问题回来写报告,从来没认真思考过到底什么数据算好!这么一说还真的有挺多东西可以挖的!
我继续鼓励他:是滴,这就是一个项目了!因为有明确的目标:改良产品,有明确的时间限制。如果你再主动跟踪下,你们改良后的产品批次是否故障率下降,这就是成果。这就是标标准准的一个数据驱动产品迭代升级的例子。谁说传统企业没有数据思维了,只是大家都习以为常了。
还是拖拉机哥,在整理了思路后,觉得自己有信心了。但他想面试的互联网公司大部分都要求python,SQL一类经验,在现有岗位上确实没得练习。还是得练爬虫。我又提示他:做产品研发,你们肯定会参照竞品是不是?以前的竞品信息八成是手动更新的吧。你可以把爬虫技能拿来练习爬竞品产品信息啊,从官网上、从阿里巴巴,反正只要能找到信息的都可以爬。这些可是货真价实对你工作有用的呢,不比爬什么拉勾网管用。
拖拉机哥恍然大悟:是啊,这样还能显得利用爬虫提高了工作效率,还能进一步分析,自学的也与工作结合了。这个例子敢拿出来讲,当然是happy ending,拖拉机哥如愿离开内地三线城市到了魔都成为一名互联网数据分析师,薪酬翻了1.5倍。虽然在陈老师看来,他那个薪酬在三线城市不少了,但是人各有志,达到自己的目标就好。
类似的例子还有很多,比如财务的同学可以练习ROI分析、做经营分析;比如运维的同学可以练习项目开发资源管理的分析;比如做销售的同学可以练习目标客户与销量分析;比如做开发的同学至少接触过数据可视化。其实,数据早已渗透进工作方方面面,对转行的同学来说,最大的敌人是:“习以为常”四个字。太多的固定思维,导致对数据不敏感,导致分析能力下降。导致看不到自己工作中的数据应用,导致过份依赖网上所谓“干货”。然而收藏的东西固然多,买的书本固然厚,能看完吸收的又有多少?
写sql,python是一种技能,数据分析是一种能力。技能可以照抄,能力需要锻炼。不练,永远不会。与大家共勉。
更多分享,可关注公众号:接地气学堂
业务知识一站通,数据分析师的第一堂企业实战课
https://edu.hellobi.com/course/179
曾经数据分析师是一个被严重低估的岗位。在我12年前本科毕业的时候,做分析是件相当没前途的事。我本人读的是应用数学系。那时候一流的学生做金融,二流的去宝洁、IBM这种五百强,三流的进各大银行三大运营商的IT... 显示全部 »
曾经数据分析师是一个被严重低估的岗位。在我12年前本科毕业的时候,做分析是件相当没前途的事。我本人读的是应用数学系。那时候一流的学生做金融,二流的去宝洁、IBM这种五百强,三流的进各大银行三大运营商的IT部,四流的做软件开发,不入流的人才去做什么数据分析。在那个年代,腾讯还是一个年收入30亿的小公司,百度刚刚崭露头角,阿里还不知道在哪里。华为,好像华为和数据没啥关系……
在这种大环境下,我果断的读了研究生。不争气的转了管理学。进入文科生的世界以后才发现,原来本科读个数学专业是这么霸气,想水个管理学/经济学的论文简直太easy。只需要找到一篇底稿,修改一下研究假设,派个问卷,然后几十行代码往lisrel里一丢,就基本大功告成。如果输出模型检验值通不过,还能通过数据加权,合成变量等手段合理合法的改数据,改到OK为止。以上做法虽然为正儿八经学习的同学们所不耻(确实很无耻,同学们勿学),但是却是应付差事的利器。类似的还有利用SPSS做因子、聚类分析,用Eviews做经济学模型,虽然过程经不起推敲,结果却看起来像那么回事。
那个年代还没有调参侠这个称呼,因此没有人当头棒喝给我那么一下,告诉我这种二半吊子做法会有什么危害。两年水来水去的生活,让我饱受同学们好评与老板们喜爱。于是不知天高地厚的,以为做分析真的就是模型一套数据一堆就搞掂了。在找实习的时候恰逢经济危机,甲方企业普遍缩减用人,于是找了个咨询公司试试伸手。没想到一试效果还行,很受领导同事的喜欢。就这么阴差阳错的绕了一个大圈以后,我又回归了数据分析的行列。
真正工作以后做的数据分析,和目前流行的数据分析基本是两个概念。确切的说,应该是更偏“分析”而不是数据。基础的数据整理、跑SQL、问卷统计等等并不需要我处理。一来当时有技术小哥帮我做这些事情,二来当时的任务是要面对客户老板。在2010左右,大企业的ERP系统已经很普遍,有条件的企业已经有了BI系统,他们所面临的问题,不是没有数据,而是没有结论。到底这些数说明了什么,到底我要怎么做,是最迫切需要回答的问题。
最初还没有自己负责项目的时候,还感觉这些东西很简单。如同所有咨询公司的同学一样,我也收藏了一套《麦肯锡七大手册》,SWOT,PEST,5w2h什么的背的滚瓜烂熟,没事就把杜邦分析法拉出来用过往项目数据撸一遍。感觉真的很简单yeah,从模版库捞ppt然后把数据往里填就好了。而且只是帮着别人撸报告,会觉得项目之间都很像。你看营销分析框架就是这一套,先诊断再找标杆最后出结论,换我我也会写。真不明白领导们在纠结什么。
出来混的,迟早是要还的。当我自己独立面对客户的时候,我终于明白领导们在纠结什么了:他们在纠结如何不被客户操死,活着把尾款收回来。因为寻找答案,比寻找数字难的多。客户花了几十上百万不是来听《管理统计》或者《市场营销》课的,而是结结实实的需要答案。到底数据背后说明了什么问题?到底这个数据能得出什么结论?我早知道这个情况了,你又分析了什么?是最常被提起的三个问题。而且,相信我,没有一本书能告诉你答案。请务必相信我,因为我真!的!试!过!
“我知道销售在这几天少了30%,所以又怎么样?”“模型预计增长30%,所以我只要坐着不动听模型的就对不对?所以我的销售要干什么?”“寻找高端客群,说的容易,我到哪里找?我要找多少?光找高端就够吗?”客户类似的咆哮,如同春节的鞭炮,在我耳边噼里啪啦啪啦霹雳炸的不停。以至于养成了一个习惯:但凡有新人写报告的时候附上:“我们一要提升销售连带率,二要优化产品品类”这种结论,我都会把这些爆竹拉出来再点一次,炸的新人魂飞破散为止。
当我很困惑的时候,我的领导用一种最简单的方式破开了我的困惑。某天在街边吃饭,他指着对面桌某个正在吃饭的小哥,说:“你注意到没有,他是我们某个客户的业务员,你现在告诉我,你可以怎样帮到他做业务”。我愣了半天,完全想不到该做什么。话说,要是我会做销售早就去做了好吧,为什么还要在这做分析写报告啊!我就是没有能力死皮赖脸的求人买东西啊。我只会找自己的熟人啊,介绍产品也含羞带臊啊。而且,这种基层业务员的动作,和数据有什么关系?我们分析的不是销售额,客单价,转化率这种抽象的东西吗?我们的分析和具体的业务离得很远啊。具体到一个个销售动作?有没有一个监控探头24小时拍摄业务员动作,数据都没有,分析个啥?
领导说:“这就是问题的关键了。你没有能力帮助基层的业务员,你怎么有能力帮助他的老板?他的老板下边有无数的这种人要管,他要烦的事本质上还得通过这些人搞掂。你不能帮助这些人做出业绩,你凭什么认为你能帮助他的老板搞掂业绩问题”。这一刻,我突然明白了为什么数据分析在企业内不被重视。
因为值钱的是数据,不是数据分析。比如对面的业务员小王,如果你能马上给他500个对我们产品感兴趣的顾客电话,那他怎么着也能把业绩做出来。如果你只是给500个电话,他还得辛辛苦苦打上一天,看有没有机会碰到一个订单。如果你给的只是:“我们的目标客户是年薪30-35岁,年收入2万以上喜欢在高端商城逛街女性”他估计能气到吐血,这他妈都是什么?你是让我去商城门口拦人吗?会被保安痛扁的好吧。如果有优质的数据,比如银行,可以拿到用户真实的个人信息,资产情况,通过银行卡记录用户消费情况,那么即使没有什么复杂的模型,也能轻松判断用户价值和需求。如果像大部分传统零售快消耐用企业那样,只有少量订单数据,就只能做一些不接地气的经营分析。对基层而言,有用的从来都是数据,而不是分析。
决定我职业发展的重大时刻,在这里来到了。我反问了领导一个问题:是滴,我是不会教小王,可是如果我能用数据追踪到一个优秀的业务员,让他去教呢?领导笑笑说:“你小子终于开窍了”。然而这个窍依然开的很艰难。当我真的在这个项目里找到了销售团队Ace以后,发现这他妈的根本复制不了。因为那哥们不是一个人,而是一个“人精”。无论外貌、着装、言语、谈吐、思维速度,根本不是一般人可以比的。而我既不能建议客户把剩下的200个销售都炒了换成这种人精,又不能建议销售们集体再投一次胎。感觉这标杆树的跟数据分析没什么关系,应该归入《投胎学》范畴。
这时候再经过领导提示,我才真正理解了流程梳理的含义。梳理销售流程不是简单的列4个P然后填做填空题,而是真正深入到业务当中。观察每一步细节。到底这个行业销售过程分作几步?最原始的名单从哪里来?工作计划如何安排?拜访客户时间表怎么定?FAB先怎么讲后怎么讲?不同类的客户是否有区别?如何探测需求成熟度?多少天、多少频次、什么理由、什么形式做跟进?最后投标价格如何比拼?一步步,一个个细节去理解销售场景,去观摩业务员行为。去剥茧抽丝,哪些是所有人可以执行的,哪些是个人特性的;哪些是可以量化的,哪些是主观能动的;哪些需要系统工具,哪些需要人工考核。
详细的梳理之后,有限收集的数据和无限复杂的业务场景结合起来,数字忽然变得有意义。这个时候开始理解为什么一个行业销售数据会有自己的波动形态;才开始理解为什么在这个行业中销售波动5%不是问题,波动10%就是问题;才开始理解为什么客户看到A类用户75%流失率也不为所动,看到B类用户10%流失率就开始发飙。虽然这样理解以后只能和客户对行业的认识打个平手,但是客户往往没有系统全面的看过数据,只有零散的凭经验的认识。逻辑性+行业理解,可以让顾问赢得客户的认可,至少能和客户平等的探讨问题,而不是被人呼来喝去了。
之后就是无数的项目积累,接触的行业越来越多,被操的次数越来越多,能力也成长了很多。到现在我都坚信:好的数据分析师都是被操出来的。被人反复质疑:你这个数据说明了什么?看到数据又能做什么?我早知道了,你又分析了什么?这三大问题以后,就会越来越思考数据分析的价值,就会越来越聚焦于分析的意义,就会抛弃那些刻板的公式与理论,找到真正对企业经营有意义的分析结论。这些才是客户愿意花钱买的东西。“如果只是看数,人家的BI系统早就有数了,为什么要花钱找你们这些人”每次培训,我都会这样给新兵们强调。
But,题目是《一个优秀的商业分析师》,所以到底优秀体现在什么地方呢?在我看来,优秀就是赚钱。如果做科研的话早就读博去了,我们出来打工就是为了赚钱,对不对。赚到钱的才算优秀。而在这一点上,陈老师有一点小小的心得可以分享。就是当我开始和销售一起打标的时候,我得到了第二次分析能力突飞猛进的机会。
这个机会叫弄死竞争对手。因为我只是广大乙方公司中很普通的一员。每次客户招标可能要看几份甚至十几份详细的方案。对面也是电脑E盘工作资料文件夹里收藏了几十G ppt的小哥小姐姐,怎么能脱颖而出呢?某次我去打标,做的方案太四平八稳,被客户吐槽:“你们分析都是这些套路,有什么新意思吗?”我很不服气,回来的路上一路吐槽:“净TMD扯淡,我TM就不信他TM能找到更TM厉害的,做市场进入研究不就TM这个套路其他公司还TM能玩出花来”。骂完之后我忽然有个想法:为什么不把这些常见套路直接展示给客户呢?我还就不信了谁还能比谁强多少。
某次客户初步和我们沟通意向,只是抛了个很常规的新品研究与上市策略的需求。眼看着又要被人吐槽:老一套。我主动出击了:“通常市场研究公司或者咨询公司都会先看目标群体再看市场份额最后做竞争态势。输出到您面前的一个条形图,您的对手bar大概这么长,您的大概这么长。然而我们早知道了啊。这个领域我们两家独大,且我们落后于竞争对手,这是个基本事实。我们的用户画像,即使没有明确的数据大家心里也八九不离十。与其花大力气重复这个事实,不如提炼出发展新用户的逻辑。这样就能真正找到切入市场的办法”。
我边说边在白板上画出图表的形态。我看到客户那边手下小弟很认真的看着我画的然后微微一笑,我看到领导表情很沉重如有所思,我知道这鱼基本上上钩了,他们应该看过类似的报告,而我正在赢得这场游戏。领导听完愣了一下,缓缓的说:“那你的建议呢?”我知道我的机会来了。我坚定的说:“既然明知道处于下风,就不要分散投入。我可以在完成基础画像完成后,快速切入竞争胜利与失败的用户群体,把更多项目费用用在测试竞争效果上,这样后续落地建议将更具体和有效”。客户领导认可的点了下头。当天晚上就发了中标通知。这是我第一次用竞争分析法搞掂客户。
之后我便更常使用这个方法。当然,之后应用的更灵活,没有那么激进的直接抨击对手(因为发现太过直接的抨击别人,会显得自己太过高调,会引起客户反感)。而是站在客户的角度思考:“到底这样做有什么用”。当我自己把自己当成评标委员,自己怼自己一顿以后,差不多如何打赢竞争对手的思路也差不多有了。
当然,赢得客户靠的不止有专业性,还有关系、费用、品牌大小等等,陈老师也并非一路战无不胜。但是这种自我diss,站在需求方角度看问题的思维方式,使得我至少超过了平均水平。即使没有赢下单子,客户至少认可我的个人能力。直到脂肪肝把我赶离咨询行业以前,我都能保持很好的工作状态。
最后总结一下,一个优秀的商业分析师是如何炼成的:第一,摆正位置,从理解如何做生意开始,理解商业问题;第二,理清流程,了解商业过程的完整流程;第三,探索规律,从优秀/差劲案例中总结商业经验;第四,提炼假设,总结出可以定性/定量分析的维度;第五,总结经验,从具体的问题分析中总结出适用于一个行业,一个企业的经验;第六,挑战经验,不断反问自己,除了这些经验以外还有没可能性,还有没有更多办法。这六个过程不断迭代,最后自己会在梳理问题逻辑,理解行业运作上越来越深入,自然也越来越优秀。
本质上,商业分析为的是解决商业问题,商业问题是盈亏利损,不是加减乘除。能理解商业运作本质,具体问题具体分析,才是商业分析师真正该做的事。把《管理统计》和《市场营销》两本书订在一起,只是证明一个人手劲很大而已。与大家共勉。
更多个人分享,可以关注公众号:接地气学堂
新版本的get_column_letter()和column_indwx_from_string()位置发生了改变,在openpyxl.utils下 from openpyxl.utils import get_... 显示全部 »
新版本的get_column_letter()和column_indwx_from_string()位置发生了改变,在openpyxl.utils下 from openpyxl.utils import get_column_letter
from openpyxl.utils import column_index_from_string 这样引入是可以正常使用的
http://www.itkeyword.com/doc/5539257896452018522/convert-timedelta64ns-column-to-seconds-in-python-pandas-dataframe
... 显示全部 »
http://www.itkeyword.com/doc/5539257896452018522/convert-timedelta64ns-column-to-seconds-in-python-pandas-dataframe
问的不好,应该描述得更加详细。
richblsbc 回答了问题 • 2018-08-23 09:54 • 1 个回复
Excel 打开时报错:XML for Analysis parser: The Role property was not recognized
很简单,所有数据复制为4份,然后用if函数取值即可。(if用来判断当前单元格的所在的区域,比如你总学生数为70,那么就用当前单元格所在的行 /70的值分别与1,2,3,4去比较。if((row(A2)/70)<1,'语文',~~... 显示全部 »
很简单,所有数据复制为4份,然后用if函数取值即可。(if用来判断当前单元格的所在的区域,比如你总学生数为70,那么就用当前单元格所在的行 /70的值分别与1,2,3,4去比较。if((row(A2)/70)<1,'语文',~~~~~
淘宝童装市场儿童内衣裤子类目市场分析简报·第十九期
零一老师 发表了文章 • 2018-01-25 09:55
超级菜鸟怎么学习数据分析?数据挖掘、工具、技术、所需知识点等?
《人人都会数据分析》20万字电子版
面包君 发表了文章 • 2018-01-03 15:15
《R的极客理想》系列图书作者张丹:用R语言把数据玩出花样
R语言中文社区 发表了文章 • 2017-09-28 09:59
拉勾网数据分析岗数据分析
wangtianshan 发表了文章 • 2017-08-23 12:51
我爬了某宝上4000+网店只为了告诉你中国人最爱喝什么绿茶
吴人beng越 发表了文章 • 2017-05-20 18:37
为啥214被塞狗粮的单身汪,520还会被塞狗粮
陈老师 发表了文章 • 2017-05-19 16:28
数据分析,R还是Python?真的是个问题么?
张土豆 发表了文章 • 2017-05-17 18:05
数据分析师VS算命先生,除了算盘与键盘,还有啥差别?
陈老师 发表了文章 • 2017-05-16 16:32
【数据分析】员工奖金合理性分析
w卫东 发表了文章 • 2017-05-12 17:47
数据分析师该这样霸气回应“0.00008的转化也很好”的谬论
陈老师 发表了文章 • 2017-05-12 16:26
分析报告被嫌弃没重点。怎么办?看这里
陈老师 发表了文章 • 2017-04-27 12:07
精准营销大扫盲。破除模型迷信人人有责,有利你我他
陈老师 发表了文章 • 2017-04-21 15:33
数据分析技术:信度与效度分析;信度和效度不仅仅能用于问卷分析!
老谢 发表了文章 • 2017-04-20 11:08
超级菜鸟怎么学习数据分析?数据挖掘、工具、技术、所需知识点等?
如何找一条船舶从开工到完工时间的时间段中75%进度的数据?
各位前辈,小弟想参与BI的项目
sqlserver 2016 代理作业 无法运行 Analysis Services 处理的ssis包报错
需要做数据汇报,有什么好的工具推荐?
用友BI产品哪里找免费版的试用?
大数据分析一般用什么工具分析?
关于Excel 连接SSAS 权限控制问题
SSAS 如何连接PostgreSQL数据库
BIEE12C回写配置问题
powerBi Peporting Servive 发布的报表自定义权限问题求解
市场上成熟的数据分析产品,会不会和数据分析师工作产生冲突?2者之间的主要区别在于哪里?
为什么现在统计软件那么多,但我们公司的BI团队还在用EXCEl计算呢?是EXCEl有着我所不知的优势?
有做医疗大数据的童鞋吗?一般这种数据都来源哪里?医疗机构,医药医疗器械公司?相关仓库?数据怎样整合?
有一些企业有专业的爬虫工程师,也有很多企业连IT人员都没有。但是对于互联网大量数据的渴求不变,这个就需要采集工具,那么这些企业是否愿意收费来使用?
pandas小册子(二)Dataframe
Max_Leo 发表了文章 • 2020-09-13 21:32
pandas小册子(一)Series
Max_Leo 发表了文章 • 2020-05-25 21:00
面向集合的思维编写SQL(8-行间数据比较)
Max_Leo 发表了文章 • 2020-02-11 12:09
面向集合的思维编写SQL(7-量化万物的谓词-Exists)
Max_Leo 发表了文章 • 2020-02-08 12:38
面向集合的思维编写SQL(6-关系除法运算之新世界篇)
Max_Leo 发表了文章 • 2020-02-07 13:34
RFM分析模型(Python)
Max_Leo 发表了文章 • 2020-02-05 13:37
面向集合的思维编写SQL(4-筛选相同行为的用户)
Max_Leo 发表了文章 • 2020-02-05 11:48
面向集合的思维编写SQL(3-手动实现except与intersect)
Max_Leo 发表了文章 • 2020-02-04 12:57
面向集合的思维编写SQL(2-移动累积值)
Max_Leo 发表了文章 • 2020-02-03 11:56
Apriori算法(Python)
Max_Leo 发表了文章 • 2020-02-02 11:23
面向集合的思维编写SQL(1-手动实现开窗函数)
Max_Leo 发表了文章 • 2020-02-01 11:19
遇到问题,没有解决思路怎么办?
猴子聊人物 发表了文章 • 2020-01-07 18:14
高校的教学质量如何监测?选对平台是关键
大麦 发表了文章 • 2020-01-03 11:44
这5个问题可以帮助你快速了解一家公司
猴子聊人物 发表了文章 • 2019-12-30 12:36