干货 | 深度学习之卷积神经网络(CNN)的前向传播算法详解

浏览: 1926

前言

在(干货 | 深度学习之卷积神经网络(CNN)的模型结构)中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的。重点会和传统的DNN比较讨论。


深度学习系列

深度学习之DNN与前向传播算法

深度学习之DNN与反向传播算法

干货 | 深度学习之损失函数与激活函数的选择

干货 | 深度学习之DNN的多种正则化方式

干货 | 深度学习之卷积神经网络(CNN)的模型结构

CNN结构回顾

在(干货 | 深度学习之卷积神经网络(CNN)的模型结构)里,已经讲到了CNN的结构,包括输出层,若干的卷积层+ReLU激活函数,若干的池化层,DNN全连接层,以及最后的用Softmax激活函数的输出层。这里我们用一个彩色的汽车样本的图像识别再从感官上回顾下CNN的结构。图中的CONV即为卷积层,POOL即为池化层,而FC即为DNN全连接层,包括了我们上面最后的用Softmax激活函数的输出层。

image.png

CNN结构示意图

从上图可以看出,要理顺CNN的前向传播算法,重点是输入层的前向传播,卷积层的前向传播以及池化层的前向传播。而DNN全连接层和用Softmax激活函数的输出层的前向传播算法我们在讲DNN时已经讲到了。

CNN输入层到卷积层的前向传播

输入层的前向传播是CNN前向传播算法的第一步。一般输入层对应的都是卷积层,因此我们标题是输入层前向传播到卷积层。

这里还是以图像识别为例

先考虑最简单的,样本都是二维的黑白图片。这样输入层X就是一个矩阵,矩阵的值等于图片的各个像素位置的值。这时和卷积层相连的卷积核W就也是矩阵。如果样本都是有RGB的彩色图片,这样输入X就是3个矩阵,即分别对应R,G和B的矩阵,或者说是一个张量。这时和卷积层相连的卷积核W就也是张量,对应的最后一维的维度为3.即每个卷积核都是3个子矩阵组成。同样的方法,对于3D的彩色图片之类的样本,我们的输入X可以是4维,5维的张量,那么对应的卷积核W也是个高维的张量。不管维度多高,对于我们的输入,前向传播的过程可以表示为:

image.png

其中,上标代表层数,星号代表卷积,而 b 代表我们的偏倚, σ 为激活函数,一般都是ReLU。

和DNN的前向传播比较一下,其实形式非常的像,只是我们这儿是张量的卷积,而不是矩阵的乘法。同时由于W是张量,那么同样的位置,W参数的个数就比DNN多很多了。

为了简化我们的描述,本文后面如果没有特殊说明,我们都默认输入是3维的张量,即用RBG可以表示的彩色图片。

定义的CNN模型参数

1) 一般我们的卷积核不止一个,比如有K个,那么我们输入层的输出,或者说第二层卷积层的对应的输入就K个。

2) 卷积核中每个子矩阵的的大小,一般都用子矩阵为方阵的卷积核,比如FxF的子矩阵。

3) 填充padding(以下简称P),我们卷积的时候,为了可以更好的识别边缘,一般都会在输入矩阵在周围加上若干圈的0再进行卷积,加多少圈则P为多少。

4) 步幅stride(以下简称S),即在卷积过程中每次移动的像素距离大小。

CNN隐层到卷积层的前向传播

现在再来看普通隐藏层前向传播到卷积层时的前向传播算法。

假设隐藏层的输出是M个矩阵对应的三维张量,则输出到卷积层的卷积核也是M个子矩阵对应的三维张量。这时表达式和输入层的类似,也是

image.png

其中,上标代表层数,星号代表卷积,而b代表我们的偏倚, σ为激活函数,一般是ReLU。也可以写成M个子矩阵子矩阵卷积后对应位置相加的形式,即

image.png

和上面唯一的区别仅仅在于,输入是隐藏层来的,而不是我们输入的原始图片样本形成的矩阵。需要我们定义的CNN模型参数也和上一节一样,这里我们需要定义卷积核的个数K,卷积核子矩阵的维度F,填充大小P以及步幅S。

CNN隐层到池化层的前向传播

池化层的处理逻辑是比较简单的,目的就是对输入的矩阵进行缩小概括。比如输入的若干矩阵是NxN维的,而我们的池化大小是k x k的区域,则输出的矩阵都是N/k × N/k维的。

这里需要需要我们定义的CNN模型参数是:

1)池化区域的大小k

2)池化的标准,一般是MAX或者Average。

CNN隐层到全连接层的前向传播

由于全连接层就是普通的DNN模型结构,因此我们可以直接使用DNN的前向传播算法逻辑,即:

image.png

这里的激活函数一般是sigmoid或者tanh。经过了若干全连接层之后,最后的一层为Softmax输出层。此时输出层和普通的全连接层唯一的区别是,激活函数是softmax函数。这里需要定义的CNN模型参数是:

1)全连接层的激活函数

2)全连接层各层神经元的个数

CNN前向传播算法小结

现在总结下CNN的前向传播算法。

算法流程

输入:1个图片样本,CNN模型的层数L和所有隐藏层的类型,对于卷积层,要定义卷积核的大小K,卷积核子矩阵的维度F,填充大小P,步幅S。对于池化层,要定义池化区域大小k和池化标准(MAX或Average),对于全连接层,要定义全连接层的激活函数(输出层除外)和各层的神经元个数。

输出:CNN模型的输出a^L

1)  根据输入层的填充大小P,填充原始图片的边缘,得到输入张量a^1。

2)初始化所有隐藏层的参数W,b  

3)for l=2 to L−1:

a)  如果第l层是卷积层,则输出为

image.png

b)  如果第l层是池化层,则输出为al=pool(al−1), 这里的pool指按照池化区域大小k和池化标准将输入张量缩小的过程。

c)  如果第l层是全连接层,则输出为

image.png

4) 对于输出层第L层:

image.png

以上就是CNN前向传播算法的过程总结。有了CNN前向传播算法的基础,后面再来理解CNN的反向传播算法就简单多了。

image.png

推荐 0
本文由 郭昱良 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

0 个评论

要回复文章请先登录注册