比较全面的Adaboost算法总结(二)

浏览: 482

作者简介

 张磊:从事AI医疗算法相关工作
个人微信公众号:机器学习算法那些事(微信ID:zl13751026985)

目录

1. Boosting算法基本原理

2. Boosting算法的权重理解

3. AdaBoost的算法流程

4. AdaBoost算法的训练误差分析

5. AdaBoost算法的解释

6. AdaBoost算法的过拟合问题讨论

7. AdaBoost算法的正则化

8. 总结

本文详细总结了AdaBoost算法的相关理论,第一篇文章相当于是入门AdaBoost算法,本文是第二篇文章,相当于深入理解AdaBoost算法,该文详细推导了AdaBoost算法的参数求解过程以及讨论了模型的过拟合问题。

AdaBoost算法的解释

AdaBoost算法是一种迭代算法,样本权重和学习器权重根据一定的公式进行更新,第一篇文章给出了更新公式,但是并没有解释原因,本节用前向分布算法去推导样本权重和学习器权重的更新公式。

1. 前向分布算法

考虑加法模型:

给定训练数据和损失函数L(y,f(x))的条件下,构建最优加法模型f(x)的问题等价于损失函数最小化:

我们利用前向分布算法来求解(2)式的最优参数前向分布算法的核心是从前向后,每一步计算一个基函数及其系数,逐步逼近优化目标函数式(2),那么就可以简化优化的复杂度

算法思路如下:

M-1个基函数的加法模型:

M个基函数的加法模型:

由(3)(4)得:

因此,极小化M个基函数的损失函数等价于:

前向分布算法的思想是从前向后计算,当我们已知的值时,可通过(6)式递归来计算第 i 个基函数及其系数,i = 1,2,...M。


结论:通过前向分布算法来求解加法模型的参数。

2. AdaBoost损失函数最小化

AdaBoost算法的强分类器是一系列弱分类器的线性组合:

其中f(x)为强分类器,共M个弱分类器是对应的弱分类器权重。

由(7)式易知,f(x)是一个加法模型。

AdaBoost的损失函数L(y,f(x))为指数函数

利用前向分布算法最小化(8)式,可得到每一轮的弱学习器和弱学习器权值。第m轮的弱学习器和权值求解过程:

首先根据(9)式来求解弱学习器,权值α看作常数:

求解弱学习器后,(9)式对α求导并使导数为0,得:

其中,α是弱学习器权值,e为分类误差率:

因为AdaBoost是加法迭代模型:

以及,得:

结论:式(14)(15)(16)与第一篇文章介绍AdaBoost算法的权重更新完全一致,即AdaBoost算法的权重更新与AdaBoost损失函数最优化是等价的,每次更新都是模型最优化的结果,(13)式的含义是每一轮弱学习器是最小化训练集权值误差率的结果。一句话,AdaBoost的参数更新和弱学习器模型构建都是模型最优化的结果。

AdaBoost算法的过拟合问题讨论

1. 何时该讨论过拟合问题

模型的泛化误差可分解为偏差、方差与噪声之和。当模型的拟合能力不够强时,泛化误差由偏差主导;当模型的拟合能力足够强时,泛化误差由方差主导。因此,当模型的训练程度足够深时,我们才考虑模型的过拟合问题。

2. 问题的提出

如下图为同一份训练数据的不同模型分类情况:

图(1)(2)的训练误差都为0,那么这两种分类模型的泛化能力孰优孰劣?在回答这个问题,我想首先介绍下边界理论(Margin Theory)。

3. 边界理论

周志华教授在《集成学习方法基础与算法》证明了:

其中,为泛化误差率,为边界阈值。

由上式可知,泛化误差收敛于某个上界,训练集的边界(Margin)越大,泛化误差越小,防止模型处于过拟合情况。如下图:

结论:增加集成学习的弱学习器数目,边界变大,泛化误差减小。

4. 不同模型的边界评估

1) 线性分类模型的边界评估

用边界理论回答第一小节的问题

线性分类模型的边界定义为所有样本点到分类边界距离的最小值,第一小节的图(b)的边界值较大,因此图(b)的泛化能力较好。

2) logistic分类模型的边界评估

logistic分类模型的边界定义为所有输入样本特征绝对值的最小值,由下图可知,模型b边界大于模型a边界,因此,模型b的泛化能力强于模型a 。

3)AdaBoost分类模型边界评估

AdaBoost的强分类器:

AdaBoost的边界定义为f(x)的绝对值,边界越大,泛化误差越好。

当训练程度足够深时,弱学习器数目增加,f(x)绝对值增加,则泛化能力增强。

结论:AdaBoost算法随着弱学习器数目的增加,边界变大,泛化能力增强。

AdaBoost算法的正则化

为了防止AdaBoost过拟合,我们通常也会加入正则化项。AdaBoost的正则化项可以理解为学习率(learning rate)。

AdaBoost的弱学习器迭代:

加入正则化项:

v的取值范围为:0 < v < 1。因此,要达到同样的训练集效果,加入正则化项的弱学习器迭代次数增加,由上节可知,迭代次数增加可以提高模型的泛化能力。

总结

AdaBoost的核心思想在于样本权重的更新和弱分类器权值的生成,样本权重的更新保证了前面的弱分类器重点处理普遍情况,后续的分类器重点处理疑难杂症。最终,弱分类器加权组合保证了前面的弱分类器会有更大的权重,这其实有先抓总体,再抓特例的分而治之思想。

关于AdaBoost算法的过拟合问题,上两节描述当弱学习器迭代数增加时,泛化能力增强。AdaBoost算法不容易出现过拟合问题,但不是绝对的,模型可能会处于过拟合的情况

(1)弱学习器的复杂度很大,因此选择较小复杂度模型可以避免过拟合问题,如选择决策树桩。adaboost + 决策树 = 提升树模型。

(2)训练数据含有较大的噪声,随着迭代次数的增加,可能出现过拟合情况。

希望这两篇文章能够打开你深入理解AdaBoost算法的大门

参考

比较全面的Adaboost算法总结(一)

李航《统计学习方法》

周志华 《机器学习》

http://blog.sina.com.cn/s/blog_6ae183910101chcg.html

https://www.zhihu.com/question/41047671

-END-


公众号后台回复关键词学习

回复 免费                获取免费课程

回复 直播                获取系列直播课

回复 Python           1小时破冰入门Python

回复 人工智能         从零入门人工智能

回复 深度学习         手把手教你用Python深度学习

回复 机器学习         小白学数据挖掘与机器学习

回复 贝叶斯算法      贝叶斯与新闻分类实战

回复 数据分析师      数据分析师八大能力培养

回复 自然语言处理  自然语言处理之AI深度学习

推荐 0
本文由 人工智能爱好者社区 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

0 个评论

要回复文章请先登录注册