深度学习笔记12:卷积神经网络的Tensorflow实现

浏览: 1606

在上一讲中,我们学习了如何利用 numpy 手动搭建卷积神经网络。但在实际的图像识别中,使用 numpy 去手写 CNN 未免有些吃力不讨好。在 DNN 的学习中,我们也是在手动搭建之后利用 Tensorflow 去重新实现一遍,一来为了能够对神经网络的传播机制能够理解更加透彻,二来也是为了更加高效使用开源框架快速搭建起深度学习项目。本节就继续和大家一起学习如何利用 Tensorflow 搭建一个卷积神经网络。

      我们继续以 NG 课题组提供的 sign 手势数据集为例,学习如何通过 Tensorflow 快速搭建起一个深度学习项目。数据集标签共有零到五总共 6 类标签,示例如下:


      先对数据进行简单的预处理并查看训练集和测试集维度:

X_train = X_train_orig/255.
X_test = X_test_orig/255.
Y_train = convert_to_one_hot(Y_train_orig, 6).T
Y_test = convert_to_one_hot(Y_test_orig, 6).T
print ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))


      可见我们总共有 1080 张 64643 训练集图像,120 张 64643 的测试集图像,共有 6 类标签。下面我们开始搭建过程。

创建 placeholder

      首先需要为训练集预测变量和目标变量创建占位符变量 placeholder ,定义创建占位符变量函数:

def create_placeholders(n_H0, n_W0, n_C0, n_y):    
   """
   Creates the placeholders for the tensorflow session.

   Arguments:
   n_H0 -- scalar, height of an input image
   n_W0 -- scalar, width of an input image
   n_C0 -- scalar, number of channels of the input
   n_y -- scalar, number of classes

   Returns:
   X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"
   Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float"
   """

   X = tf.placeholder(tf.float32, shape=(None, n_H0, n_W0, n_C0), name='X')
   Y = tf.placeholder(tf.float32, shape=(None, n_y), name='Y')    
   return X, Y

参数初始化

      然后需要对滤波器权值参数进行初始化:

def initialize_parameters():    
   """
   Initializes weight parameters to build a neural network with tensorflow.
   Returns:
   parameters -- a dictionary of tensors containing W1, W2
   """


   tf.set_random_seed(1)                            

   W1 = tf.get_variable("W1", [4,4,3,8], initializer = tf.contrib.layers.xavier_initializer(seed = 0))
   W2 = tf.get_variable("W2", [2,2,8,16], initializer = tf.contrib.layers.xavier_initializer(seed = 0))

   parameters = {"W1": W1,                  
                 "W2": W2}    
   return parameters

执行卷积网络的前向传播过程


      前向传播过程如下所示:
CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED


      可见我们要搭建的是一个典型的 CNN 过程,经过两次的卷积-relu激活-最大池化,然后展开接上一个全连接层。利用 Tensorflow  搭建上述传播过程如下:

def forward_propagation(X, parameters):    
   """
   Implements the forward propagation for the model

   Arguments:
   X -- input dataset placeholder, of shape (input size, number of examples)
   parameters -- python dictionary containing your parameters "W1", "W2"
                 the shapes are given in initialize_parameters

   Returns:
   Z3 -- the output of the last LINEAR unit
   """


   # Retrieve the parameters from the dictionary "parameters"
   W1 = parameters['W1']
   W2 = parameters['W2']    
   # CONV2D: stride of 1, padding 'SAME'
   Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME')    
   # RELU
   A1 = tf.nn.relu(Z1)    
   # MAXPOOL: window 8x8, sride 8, padding 'SAME'
   P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME')    
   # CONV2D: filters W2, stride 1, padding 'SAME'
   Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME')    
   # RELU
   A2 = tf.nn.relu(Z2)  
   # MAXPOOL: window 4x4, stride 4, padding 'SAME'
   P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME')    
   # FLATTEN
   P2 = tf.contrib.layers.flatten(P2)

   Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn = None)    
   return Z3

计算当前损失

      在 Tensorflow  中计算损失函数非常简单,一行代码即可:

def compute_cost(Z3, Y):    
   """
   Computes the cost
   Arguments:
   Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
   Y -- "true" labels vector placeholder, same shape as Z3

   Returns:
   cost - Tensor of the cost function
   """


   cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y))    
   return cost

      定义好上述过程之后,就可以封装整体的训练过程模型。可能你会问为什么没有反向传播,这里需要注意的是 Tensorflow 帮助我们自动封装好了反向传播过程,无需我们再次定义,在实际搭建过程中我们只需将前向传播的网络结构定义清楚即可。

封装模型

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
         num_epochs = 100, minibatch_size = 64, print_cost = True)
:    
   """
   Implements a three-layer ConvNet in Tensorflow:
   CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED

   Arguments:
   X_train -- training set, of shape (None, 64, 64, 3)
   Y_train -- test set, of shape (None, n_y = 6)
   X_test -- training set, of shape (None, 64, 64, 3)
   Y_test -- test set, of shape (None, n_y = 6)
   learning_rate -- learning rate of the optimization
   num_epochs -- number of epochs of the optimization loop
   minibatch_size -- size of a minibatch
   print_cost -- True to print the cost every 100 epochs

   Returns:
   train_accuracy -- real number, accuracy on the train set (X_train)
   test_accuracy -- real number, testing accuracy on the test set (X_test)
   parameters -- parameters learnt by the model. They can then be used to predict.
   """


   ops.reset_default_graph()                        
   tf.set_random_seed(1)                            
   seed = 3                                        
   (m, n_H0, n_W0, n_C0) = X_train.shape            
   n_y = Y_train.shape[1]                            
   costs = []                                      

   # Create Placeholders of the correct shape
   X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)  
   # Initialize parameters
   parameters = initialize_parameters()    
   # Forward propagation
   Z3 = forward_propagation(X, parameters)    
   # Cost function
   cost = compute_cost(Z3, Y)    
   # Backpropagation
   optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)    # Initialize all the variables globally
   init = tf.global_variables_initializer()    
   # Start the session to compute the tensorflow graph
   with tf.Session() as sess:        
       # Run the initialization
       sess.run(init)        
       # Do the training loop
       for epoch in range(num_epochs):

           minibatch_cost = 0.
           num_minibatches = int(m / minibatch_size)
           seed = seed + 1
           minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)            
           for minibatch in minibatches:                
               # Select a minibatch
               (minibatch_X, minibatch_Y) = minibatch
               _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
               minibatch_cost += temp_cost / num_minibatches            
               # Print the cost every epoch
           if print_cost == True and epoch % 5 == 0:              
               print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))            
           if print_cost == True and epoch % 1 == 0:
               costs.append(minibatch_cost)        
       # plot the cost
       plt.plot(np.squeeze(costs))
       plt.ylabel('cost')
       plt.xlabel('iterations (per tens)')
       plt.title("Learning rate =" + str(learning_rate))
       plt.show()        # Calculate the correct predictions
       predict_op = tf.argmax(Z3, 1)
       correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))        
       # Calculate accuracy on the test set
       accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
       print(accuracy)
       train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
       test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
       print("Train Accuracy:", train_accuracy)
       print("Test Accuracy:", test_accuracy)      
        
       return train_accuracy, test_accuracy, parameters

     对训练集执行模型训练:

_, _, parameters = model(X_train, Y_train, X_test, Y_test)

     训练迭代过程如下:


    我们在训练集上取得了 0.67 的准确率,在测试集上的预测准确率为 0.58 ,虽然效果并不显著,模型也有待深度调优,但我们已经学会了如何用 Tensorflow  快速搭建起一个深度学习系统了。

  注:本深度学习笔记系作者学习 Andrew NG 的 deeplearningai 五门课程所记笔记,其中代码为每门课的课后assignments作业整理而成。

参考资料:

https://www.coursera.org/learn/machine-learning

https://www.deeplearning.ai/




image.png

推荐 0
本文由 鲁伟 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

0 个评论

要回复文章请先登录注册