【十大经典数据挖掘算法】EM

浏览: 1400

1. 极大似然

极大似然(Maximum Likelihood)估计为用于已知模型的参数估计的统计学方法。比如,我们想了解抛硬币是正面(head)的概率分布θ;那么可以通过最大似然估计方法求得。假如我们抛硬币10次,其中8次正面、2次反面;极大似然估计参数θ值:

Clipboard Image.png

其中,l(θ)为观测变量序列的似然函数(likelihood function of the observation sequence)。对l(θ)求偏导

Clipboard Image.png

因为似然函数l(θ)不是凹函数(concave),求解极大值困难。一般地,使用与之具有相同单调性的log-likelihood,如图所示


凹函数(concave)与凸函数(convex)的定义如图所示:


从图中可以看出,凹函数“容易”求解极大值,凸函数“容易”求解极小值。

2. EM算法

EM算法(Expectation Maximization)是在含有隐变量(latent variable)的模型下计算最大似然的一种算法。所谓隐变量,是指我们没有办法观测到的变量。比如,有两枚硬币A、B,每一次随机取一枚进行抛掷,我们只能观测到硬币的正面与反面,而不能观测到每一次取的硬币是否为A;则称每一次的选择抛掷硬币为隐变量。

用Y表示观测数据,Z表示隐变量;Y和Z连在一起称为完全数据( complete-data ),观测数据Y又称为不完全数据(incomplete-data)。观测数据的似然函数:

Clipboard Image.png

求模型参数的极大似然估计:

Clipboard Image.png

因为含有隐变量,此问题无法求解。因此,Dempster等人提出EM算法用于迭代求解近似解。EM算法比较简单,分为两个步骤:

  • E步(E-step),以当前参数θ(i)计算Z的期望值

Clipboard Image.png

M步(M-step),求使Q(θ,θ(i))极大化的θ,确定第i+1次迭代的参数的估计值θ(i+1)

Clipboard Image.png

如此迭代直至算法收敛。关于算法的推导及收敛性证明,可参看李航的《统计学习方法》及Andrew Ng的《CS229 Lecture notes》。这里有一些极大似然以及EM算法的生动例子。

3. 实例

[2]中给出极大似然与EM算法的实例。如图所示,有两枚硬币A、B,每一个实验随机取一枚抛掷10次,共5个实验,我们可以观测到每一次所取的硬币,估计参数A、B为正面的概率θ=(θA,θB),根据极大似然估计求解


如果我们不能观测到每一次所取的硬币,只能用EM算法估计模型参数,算法流程如图所示:


隐变量Z为每次实验中选择A或B的概率,则第一个实验选择A的概率为

Clipboard Image.png

按照上面的计算方法可依次求出隐变量Z,然后计算极大化的θ(i)。经过10次迭代,最终收敛。

4. 参考资料

[1] 李航,《统计学习方法》.
[2] Chuong B Do & Serafim Batzoglou, What is the expectation maximization algorithm?
[3] Pieter Abbeel, Maximum Likelihood (ML), Expectation Maximization (EM).
[4] Rudan Chen,【机器学习算法系列之一】EM算法实例分析.

推荐 1
本文由 Treant 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

0 个评论

要回复文章请先登录注册