我想向大家了解下,目前做的是一些简单数据分析,SQL和Excel,想做更加深入的分析,学习RStudio这个方向是对的吗

1
已邀请:
5

marxsong 2016-10-21 回答

RStudio 是R语言的一个IDE工具,你应该是问学习R语言,我觉得做数据分析的应该要学习,R语言结合各类包能够解决更广的问题。
参考一个学习清单给你,当然你也可以在天善上学习视频。
 
一、初学入门:
《R in Action》
从统计角度入手,分高中低三部分由浅入深的讲解了如何用R来实现统计分析。

《The Art of_R Programming》
从程序编写的角度入手,对R的本身特点进行了清晰的介绍。

《learning R》
这本书没有单纯的讲语法,而是和数据分析的流程结合了起来,从数据获取到数据整理再到分析和报告,有一气呵成的感觉,此外最后两章讲如何写稳健的R代码以及写包都是非常精彩的。

二、统计进阶:
《A Handbook of Statistical Analyses_Using_R》
《Modern Applied Statistics With S》
这两本书基本上涵盖了统计的一些高阶内容,例如多元分析、多层回归模型、荟萃分析、生存分析等内容。案例丰富,公式不多,值得反复学习参考。

三、科学计算:
《Introduction to Scientific Programming and Simulation Using R》
《Mastering Scientific Computing with R》
除了统计分析外,独特之处在于使用R来做数值分析,如求根,最优化,数值积分。还包括了一些常见的模拟技术。书后的习题和最后的案例非常有用。

四、数据挖掘:
《Practical Data Science with R》
以R本身的扩展包和函数入手,很有体系的介绍了数据科学的各个方面。

《An Introduction to Statistical Learning》这本书可以说是另一本数据挖掘大作《The Elements of Statistical Learning》的R实现手册,体系结构基本一致,更强调用R来实现,更难得的地方是提供了很好的习题。

《Data Mining with R Learning with Case Studies》
《Machine Learning for Hackers》
两本侧重于数据挖掘的R书,全是以案例为线索,示范的代码量很大。跟一遍下来会有很大的收获。

《Data Mining explain using R》
用基本函数来实现各种机器学习算法,对理解算法底层很有帮助。

《Data Science in R》
以案例为主的书,需要一定的数据挖掘基础。


五、数据绘图:
《ggplot2 Elegant Graphics for Data Analysis》
ggplot2还有什么好说的呢,R中最优秀的绘图包,但由于近期该包升级很快,这书显得有些过时。好在中文版进行了大幅更新,即将面世。

《R Graphics Cookbook》这本书也是RStudio公司的人出的,似乎是Hadley的学生吧,主要是各种ggplot2包的例子,也包括了用其它包来画图,建议通读一遍。
六、参考手册:
《R Cookbook》
《R in a Nutshell》
有时候我们需要类似词典的案头参考手册,以方便随时查阅。又或者可以通读一遍以查漏补缺。上面两本书虽然有些厚度,但仍然推荐之。后者的中文版也在翻译状态。
七、高级编程:
《R Programming for Bioinformatics》
《software for data analysis programming with R》
如果你是初学者,不要去看上面两本书。如果你想进阶为专家级R用户,那你需要精读它们。前者讲解了R少为人知的一面,例如字符处理、正则表达和XML,还有报错处理以及与其它语言的交互。后者更是编写生产级代码的圣经指南。
《Advanced R programming》Hadley的力作,清楚的讲解了R的函数式编程思想和写R包的各种细节,要迈入R高手,不得不读。
 
0

大乌叶 2016-12-13 回答

厉害
0

哥本哈士奇 - 专注微软平台的商业智能解决方案 2016-12-13 回答

直接上RStudio容易被吓死,除非你对统计分析什么的特别感兴趣后者本身是这个专业,否则还是建议慢慢来。
0

梁勇 - 天道酬勤、上善若水。爱好商业智能 2016-12-19 回答

更新成博客了
0

柳备胎 - 一个不甘现状的努力的大学生 2017-01-07 回答

谢谢推荐,非常赞

要回复问题请先登录注册