67页PPT,学透机器学习算法、应用及数据处理(附下载)

浏览: 102

文章发布于公号【数智物语】 (ID:decision_engine),关注公号不错过每一篇干货。

来源 | 百度文库

作为AI的重要分支,机器学习在推荐系统、在线广告、金融市场分析、计算机视觉、语言学、生物信息学等诸多领域都取得了巨大的成功。机器学习并不是像我们字面理解的那样,让冷冰冰的机器去学习,或者狭义的理解为让机器人去学习。

机器学习,从本质上来说,可以理解为算法学习(Algorithm Learning)、模型学习(Model Learning)或者叫函数学习(Function Learning)。今天这个PPT将为大家详细介绍机器学习-算法。

01机器学习算法大致可以分为三类

监督学习算法 (Supervised Algorithms): 在监督学习训练过程中,可以由训练数据集学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。该算法要求特定的输入/输出,首先需要决定使用哪种数据作为范例。例如,文字识别应用中一个手写的字符,或一行手写文字。主要算法包括神经网络、支持向量机、最近邻居法、朴素贝叶斯法、决策树等。

无监督学习算法 (Unsupervised Algorithms): 这类算法没有特定的目标输出,算法将数据集分为不同的组。

强化学习算法 (Reinforcement Algorithms): 强化学习普适性强,主要基于决策进行训练,算法根据输出结果(决策)的成功或错误来训练自己,通过大量经验训练优化后的算法将能够给出较好的预测。类似有机体在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为。在运筹学和控制论的语境下,强化学习被称作“近似动态规划”(approximate dynamic programming,ADP)。

02基本的机器学习算法:

线性回归算法 Linear Regression

支持向量机算法 Support Vector Machine,SVM

最近邻居/k-近邻算法 K-Nearest Neighbors,KNN

逻辑回归算法 Logistic Regression

决策树算法 Decision Tree

k-平均算法 K-Means

随机森林算法 Random Forest

朴素贝叶斯算法 Naive Bayes

降维算法 Dimensional Reduction

梯度增强算法 Gradient Boosting

Apriori算法

最大期望算法Expectation-Maximization algorithm, EM

PageRank算法

本文档的pdf版可在公号“数智物语”后台回复“10大机器学习算法”查看详情。文档来源于百度文库,版权归原作者所有。

推荐阅读:

链接图片1.png

链接图片2.png

数智物语征稿启事.png

星标我,每天多一点智慧

星标备选20190408.gif

推荐 0
本文由 数智物语 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

0 个评论

要回复文章请先登录注册