大数据挖掘算法篇之K-Means实例

浏览: 1645

18

2

2

0.0 0.0 

1.0 0.0 

0.0 1.0 

2.0 1.0 

1.0 2.0 

2.0 2.0 

2.0 0.0 

0.0 2.0 

7.0 6.0 

7.0 7.0 

7.0 8.0 

8.0 6.0 

8.0 7.0 

8.0 8.0 

8.0 9.0 

9.0 7.0 

9.0 8.0 

9.0 9.0 

二、欧几里得距离:

欧几里得距离定义: 欧几里得距离( Euclidean distance)也称欧氏距离,在n维空间内,最短的线的长度即为其欧氏距离。它是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。

在二维和三维空间中的欧式距离的就是两点之间的距离,二维的公式是

d = sqrt((x1-x2)^+(y1-y2)^)

三维的公式是

d=sqrt((x1-x2)^+(y1-y2)^+(z1-z2)^)

推广到n维空间,欧式距离的公式是

d=sqrt( ∑(xi1-xi2)^ ) 这里i=1,2..n

xi1表示第一个点的第i维坐标,xi2表示第二个点的第i维坐标

n维欧氏空间是一个点集,它的每个点可以表示为(x(1),x(2),...x(n)),其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上面的公式.

欧氏距离看作信号的相似程度。 距离越近就越相似,就越容易相互干扰,误码率就越高。

三、代码示例

/****************************************************************************
*                                                                           *
*  KMEANS                                                                   *
*                                                                           *
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include <math.h>
// FUNCTION PROTOTYPES
// DEFINES
#define         SUCCESS         1
#define         FAILURE         0
#define         TRUE            1
#define         FALSE           0
#define         MAXVECTDIM      20
#define         MAXPATTERN      20
#define         MAXCLUSTER      10
char *f2a(double x, int width){
   char cbuf[255];
   char *cp;
   int i,k;
   int d,s;
    cp=fcvt(x,width,&d,&s);
    if (s) {
       strcpy(cbuf,"-");
     }
     else {
       strcpy(cbuf," ");
       } /* endif */
    if (d>0) {
       for (i=0; i<d; i++) {
          cbuf[i+1]=cp[i];
          } /* endfor */
       cbuf[d+1]=0;
       cp+=d;
       strcat(cbuf,".");
       strcat(cbuf,cp);
       } else {
          if (d==0) {
             strcat(cbuf,".");
             strcat(cbuf,cp);
             } 
           else {
             k=-d;
             strcat(cbuf,".");
             for (i=0; i<k; i++) {
                strcat(cbuf,"0");
                } /* endfor */
             strcat(cbuf,cp);
             } /* endif */
       } /* endif */
    cp=&cbuf[0];
    return cp;
}
// ***** Defined structures & classes *****
struct aCluster {
   double       Center[MAXVECTDIM];
   int          Member[MAXPATTERN];  //Index of Vectors belonging to this cluster
   int          NumMembers;
};
struct aVector {
   double       Center[MAXVECTDIM];
   int          Size;
};
class System {
private:
   double       Pattern[MAXPATTERN][MAXVECTDIM+1];
   aCluster     Cluster[MAXCLUSTER];
   int          NumPatterns;          // Number of patterns
   int          SizeVector;           // Number of dimensions in vector
   int          NumClusters;          // Number of clusters
   void         DistributeSamples();  // Step 2 of K-means algorithm
   int          CalcNewClustCenters();// Step 3 of K-means algorithm
   double       EucNorm(int, int);   // Calc Euclidean norm vector
   int          FindClosestCluster(int); //ret indx of clust closest to pattern
                                         //whose index is arg
public:
   void system();
   int LoadPatterns(char *fname);      // Get pattern data to be clustered
   void InitClusters();                // Step 1 of K-means algorithm
   void RunKMeans();                   // Overall control K-means process
   void ShowClusters();                // Show results on screen
   void SaveClusters(char *fname);     // Save results to file
   void ShowCenters();
};
//输出聚类中心
void System::ShowCenters(){
    int i,j;
    printf("Cluster centers:\n");
    for (i=0; i<NumClusters; i++) {
       Cluster[i].Member[0]=i;
       printf("ClusterCenter[%d]=(%f,%f)\n",i,Cluster[i].Center[0],Cluster[i].Center[1]);
       } /* endfor */
    printf("\n");
    getchar();
}
//读取文件
int System::LoadPatterns(char *fname)
{
   FILE *InFilePtr;
   int    i,j;
   double x;
    if((InFilePtr = fopen(fname, "r")) == NULL)
        return FAILURE;
    fscanf(InFilePtr, "%d", &NumPatterns);  // Read # of patterns                18数据量
    fscanf(InFilePtr, "%d", &SizeVector);   // Read dimension of vector            2维度
    fscanf(InFilePtr, "%d", &NumClusters);  // Read # of clusters for K-Means    2簇
    for (i=0; i<NumPatterns; i++) {         // For each vector
       for (j=0; j<SizeVector; j++) {       // create a pattern
          fscanf(InFilePtr,"%lg",&x);       // consisting of all elements
          Pattern[i][j]=x;
          } /* endfor */
       } /* endfor */
    //输出所有数据元素
    printf("Input patterns:\n");
    for (i=0; i<NumPatterns; i++) {
       printf("Pattern[%d]=(%2.3f,%2.3f)\n",i,Pattern[i][0],Pattern[i][1]);
       } /* endfor */
    printf("\n--------------------\n");
    getchar();
    return SUCCESS;
}
//***************************************************************************
// InitClusters                                                             *
//   Arbitrarily assign a vector to each of the K clusters                  *
//   We choose the first K vectors to do this                               *
//***************************************************************************
//初始化聚类中心
void System::InitClusters(){
    int i,j;
    printf("Initial cluster centers:\n");
    for (i=0; i<NumClusters; i++) {
       Cluster[i].Member[0]=i;
       for (j=0; j<SizeVector; j++) {
          Cluster[i].Center[j]=Pattern[i][j];
          } /* endfor */
       } /* endfor */
    for (i=0; i<NumClusters; i++) {
        printf("ClusterCenter[%d]=(%f,%f)\n",i,Cluster[i].Center[0],Cluster[i].Center[1]);                //untransplant
       } /* endfor */
    printf("\n");
    getchar();
}
//运行KMeans
void System::RunKMeans(){
      int converged;
      int pass;
    pass=1;
    converged=FALSE;
    //第N次聚类
    while (converged==FALSE) {
       printf("PASS=%d\n",pass++);
       DistributeSamples();
       converged=CalcNewClustCenters();
       ShowCenters();
       getchar();
       } /* endwhile */
}
//在二维和三维空间中的欧式距离的就是两点之间的距离,二维的公式是
//d = sqrt((x1-x2)^+(y1-y2)^)
//通过这种运算,就可以把所有列的属性都纳入进来
double System::EucNorm(int p, int c){        // Calc Euclidean norm of vector difference
    double dist,x;                          // between pattern vector, p, and cluster
    int i;                                  // center, c.
    char zout[128];
    char znum[40];
    char *pnum;
    //
    pnum=&znum[0];
    strcpy(zout,"d=sqrt(");
    printf("The distance from pattern %d to cluster %d is calculated as:\n",p,c);
    dist=0;
    for (i=0; i<SizeVector ;i++){
       //拼写字符串
       x=(Cluster[c].Center[i]-Pattern[p][i])*(Cluster[c].Center[i]-Pattern[p][i]);
       strcat(zout,f2a(x,4));
       if (i==0)
          strcat(zout,"+");
        //计算距离
       dist += (Cluster[c].Center[i]-Pattern[p][i])*(Cluster[c].Center[i]-Pattern[p][i]);
       } /* endfor */
    printf("%s)\n",zout);
    return dist;
}
//查找最近的群集
int System::FindClosestCluster(int pat){
   int i, ClustID;
   double MinDist, d;
    MinDist =9.9e+99;
    ClustID=-1;
    for (i=0; i<NumClusters; i++) {
       d=EucNorm(pat,i);
       printf("Distance from pattern %d to cluster %d is %f\n\n",pat,i,sqrt(d));
       if (d<MinDist) {
          MinDist=d;
          ClustID=i;
          } /* endif */
       } /* endfor */
    if (ClustID<0) {
       printf("Aaargh");
       exit(0);
       } /* endif */
    return ClustID;
}
//
void System::DistributeSamples(){
    int i,pat,Clustid,MemberIndex;
    //Clear membership list for all current clusters
    for (i=0; i<NumClusters;i++){
       Cluster[i].NumMembers=0;
       }
    for (pat=0; pat<NumPatterns; pat++) {
       //Find cluster center to which the pattern is closest
       Clustid= FindClosestCluster(pat);//查找最近的聚类中心
       printf("patern %d assigned to cluster %d\n\n",pat,Clustid);
       //post this pattern to the cluster
       MemberIndex=Cluster[Clustid].NumMembers;
       Cluster[Clustid].Member[MemberIndex]=pat;
       Cluster[Clustid].NumMembers++;
       } /* endfor */
}
//计算新的群集中心
int  System::CalcNewClustCenters(){
   int ConvFlag,VectID,i,j,k;
   double tmp[MAXVECTDIM];
   char xs[255];
   char ys[255];
   char nc1[20];
   char nc2[20];
   char *pnc1;
   char *pnc2;
   char *fpv;
    pnc1=&nc1[0];
    pnc2=&nc2[0];
    ConvFlag=TRUE;
    printf("The new cluster centers are now calculated as:\n");
    for (i=0; i<NumClusters; i++) {              //for each cluster
       pnc1=itoa(Cluster[i].NumMembers,nc1,10);
       pnc2=itoa(i,nc2,10);
       strcpy(xs,"Cluster Center");
       strcat(xs,nc2);
       strcat(xs,"(1/");
       strcpy(ys,"(1/");
       strcat(xs,nc1);
       strcat(ys,nc1);
       strcat(xs,")(");
       strcat(ys,")(");
       for (j=0; j<SizeVector; j++) {            // clear workspace
          tmp[j]=0.0;
          } /* endfor */
       for (j=0; j<Cluster[i].NumMembers; j++) { //traverse member vectors
          VectID=Cluster[i].Member[j];
          for (k=0; k<SizeVector; k++) {         //traverse elements of vector
                 tmp[k] += Pattern[VectID][k];       // add (member) pattern elmnt into temp
                 if (k==0) {
                      strcat(xs,f2a(Pattern[VectID][k],3));
                    } else {
                      strcat(ys,f2a(Pattern[VectID][k],3));
                      } /* endif */
            } /* endfor */
          if(j<Cluster[i].NumMembers-1){
             strcat(xs,"+");
             strcat(ys,"+");
             }
            else {
             strcat(xs,")");
             strcat(ys,")");
             }
          } /* endfor */
       for (k=0; k<SizeVector; k++) {            //traverse elements of vector
          tmp[k]=tmp[k]/Cluster[i].NumMembers;
          if (tmp[k] != Cluster[i].Center[k])
             ConvFlag=FALSE;
          Cluster[i].Center[k]=tmp[k];
          } /* endfor */
       printf("%s,\n",xs);
       printf("%s\n",ys);
       } /* endfor */
    return ConvFlag;
}
//输出聚类
void System::ShowClusters(){
   int cl;
    for (cl=0; cl<NumClusters; cl++) {
       printf("\nCLUSTER %d ==>[%f,%f]\n", cl,Cluster[cl].Center[0],Cluster[cl].Center[1]);
       } /* endfor */
}
void System::SaveClusters(char *fname){
}



四、主调程序

void main(int argc, char *argv[]) 
{
   System kmeans;
   /*
    if (argc<2) {
       printf("USAGE: KMEANS PATTERN_FILE\n");
       exit(0);
       }*/
    if (kmeans.LoadPatterns("KM2.DAT")==FAILURE ){
       printf("UNABLE TO READ PATTERN_FILE:%s\n",argv[1]);
       exit(0);
        }
    kmeans.InitClusters();
    kmeans.RunKMeans();
    kmeans.ShowClusters();
}

五、输出结果

Input patterns:
Pattern[0]=(0.000,0.000)
Pattern[1]=(1.000,0.000)
Pattern[2]=(0.000,1.000)
Pattern[3]=(2.000,1.000)
Pattern[4]=(1.000,2.000)
Pattern[5]=(2.000,2.000)
Pattern[6]=(2.000,0.000)
Pattern[7]=(0.000,2.000)
Pattern[8]=(7.000,6.000)
Pattern[9]=(7.000,7.000)
Pattern[10]=(7.000,8.000)
Pattern[11]=(8.000,6.000)
Pattern[12]=(8.000,7.000)
Pattern[13]=(8.000,8.000)
Pattern[14]=(8.000,9.000)
Pattern[15]=(9.000,7.000)
Pattern[16]=(9.000,8.000)
Pattern[17]=(9.000,9.000)
--------------------
Initial cluster centers:
ClusterCenter[0]=(0.000000,0.000000)
ClusterCenter[1]=(1.000000,0.000000)
PASS=1
The distance from pattern 0 to cluster 0 is calculated as:
d=sqrt( .0000+ .0000)
Distance from pattern 0 to cluster 0 is 0.000000
The distance from pattern 0 to cluster 1 is calculated as:
d=sqrt( 1.0000+ .0000)
Distance from pattern 0 to cluster 1 is 1.000000
patern 0 assigned to cluster 0
The distance from pattern 1 to cluster 0 is calculated as:
d=sqrt( 1.0000+ .0000)
Distance from pattern 1 to cluster 0 is 1.000000
The distance from pattern 1 to cluster 1 is calculated as:
d=sqrt( .0000+ .0000)
Distance from pattern 1 to cluster 1 is 0.000000
patern 1 assigned to cluster 1
The distance from pattern 2 to cluster 0 is calculated as:
d=sqrt( .0000+ 1.0000)
Distance from pattern 2 to cluster 0 is 1.000000
The distance from pattern 2 to cluster 1 is calculated as:
d=sqrt( 1.0000+ 1.0000)
Distance from pattern 2 to cluster 1 is 1.414214
patern 2 assigned to cluster 0
The distance from pattern 3 to cluster 0 is calculated as:
d=sqrt( 4.0000+ 1.0000)
Distance from pattern 3 to cluster 0 is 2.236068
The distance from pattern 3 to cluster 1 is calculated as:
d=sqrt( 1.0000+ 1.0000)
Distance from pattern 3 to cluster 1 is 1.414214
patern 3 assigned to cluster 1
The distance from pattern 4 to cluster 0 is calculated as:
d=sqrt( 1.0000+ 4.0000)
Distance from pattern 4 to cluster 0 is 2.236068
The distance from pattern 4 to cluster 1 is calculated as:
d=sqrt( .0000+ 4.0000)
Distance from pattern 4 to cluster 1 is 2.000000
patern 4 assigned to cluster 1
The distance from pattern 5 to cluster 0 is calculated as:
d=sqrt( 4.0000+ 4.0000)
Distance from pattern 5 to cluster 0 is 2.828427
The distance from pattern 5 to cluster 1 is calculated as:
d=sqrt( 1.0000+ 4.0000)
Distance from pattern 5 to cluster 1 is 2.236068
patern 5 assigned to cluster 1
The distance from pattern 6 to cluster 0 is calculated as:
d=sqrt( 4.0000+ .0000)
Distance from pattern 6 to cluster 0 is 2.000000
The distance from pattern 6 to cluster 1 is calculated as:
d=sqrt( 1.0000+ .0000)
Distance from pattern 6 to cluster 1 is 1.000000
patern 6 assigned to cluster 1
The distance from pattern 7 to cluster 0 is calculated as:
d=sqrt( .0000+ 4.0000)
Distance from pattern 7 to cluster 0 is 2.000000
The distance from pattern 7 to cluster 1 is calculated as:
d=sqrt( 1.0000+ 4.0000)
Distance from pattern 7 to cluster 1 is 2.236068
patern 7 assigned to cluster 0
The distance from pattern 8 to cluster 0 is calculated as:
d=sqrt( 49.0000+ 36.0000)
Distance from pattern 8 to cluster 0 is 9.219544
The distance from pattern 8 to cluster 1 is calculated as:
d=sqrt( 36.0000+ 36.0000)
Distance from pattern 8 to cluster 1 is 8.485281
patern 8 assigned to cluster 1
The distance from pattern 9 to cluster 0 is calculated as:
d=sqrt( 49.0000+ 49.0000)
Distance from pattern 9 to cluster 0 is 9.899495
The distance from pattern 9 to cluster 1 is calculated as:
d=sqrt( 36.0000+ 49.0000)
Distance from pattern 9 to cluster 1 is 9.219544
patern 9 assigned to cluster 1
The distance from pattern 10 to cluster 0 is calculated as:
d=sqrt( 49.0000+ 64.0000)
Distance from pattern 10 to cluster 0 is 10.630146
The distance from pattern 10 to cluster 1 is calculated as:
d=sqrt( 36.0000+ 64.0000)
Distance from pattern 10 to cluster 1 is 10.000000
patern 10 assigned to cluster 1
The distance from pattern 11 to cluster 0 is calculated as:
d=sqrt( 64.0000+ 36.0000)
Distance from pattern 11 to cluster 0 is 10.000000
The distance from pattern 11 to cluster 1 is calculated as:
d=sqrt( 49.0000+ 36.0000)
Distance from pattern 11 to cluster 1 is 9.219544
patern 11 assigned to cluster 1
The distance from pattern 12 to cluster 0 is calculated as:
d=sqrt( 64.0000+ 49.0000)
Distance from pattern 12 to cluster 0 is 10.630146
The distance from pattern 12 to cluster 1 is calculated as:
d=sqrt( 49.0000+ 49.0000)
Distance from pattern 12 to cluster 1 is 9.899495
patern 12 assigned to cluster 1
The distance from pattern 13 to cluster 0 is calculated as:
d=sqrt( 64.0000+ 64.0000)
Distance from pattern 13 to cluster 0 is 11.313708
The distance from pattern 13 to cluster 1 is calculated as:
d=sqrt( 49.0000+ 64.0000)
Distance from pattern 13 to cluster 1 is 10.630146
patern 13 assigned to cluster 1
The distance from pattern 14 to cluster 0 is calculated as:
d=sqrt( 64.0000+ 81.0000)
Distance from pattern 14 to cluster 0 is 12.041595
The distance from pattern 14 to cluster 1 is calculated as:
d=sqrt( 49.0000+ 81.0000)
Distance from pattern 14 to cluster 1 is 11.401754
patern 14 assigned to cluster 1
The distance from pattern 15 to cluster 0 is calculated as:
d=sqrt( 81.0000+ 49.0000)
Distance from pattern 15 to cluster 0 is 11.401754
The distance from pattern 15 to cluster 1 is calculated as:
d=sqrt( 64.0000+ 49.0000)
Distance from pattern 15 to cluster 1 is 10.630146
patern 15 assigned to cluster 1
The distance from pattern 16 to cluster 0 is calculated as:
d=sqrt( 81.0000+ 64.0000)
Distance from pattern 16 to cluster 0 is 12.041595
The distance from pattern 16 to cluster 1 is calculated as:
d=sqrt( 64.0000+ 64.0000)
Distance from pattern 16 to cluster 1 is 11.313708
patern 16 assigned to cluster 1
The distance from pattern 17 to cluster 0 is calculated as:
d=sqrt( 81.0000+ 81.0000)
Distance from pattern 17 to cluster 0 is 12.727922
The distance from pattern 17 to cluster 1 is calculated as:
d=sqrt( 64.0000+ 81.0000)
Distance from pattern 17 to cluster 1 is 12.041595
patern 17 assigned to cluster 1
The new cluster centers are now calculated as:
Cluster Center0(1/3)( .000+ .000+ .000),
(1/3)( .000+ 1.000+ 2.000)
Cluster Center1(1/15)( 1.000+ 2.000+ 1.000+ 2.000+ 2.000+ 7.000+ 7.000+ 7.000+ 8
.000+ 8.000+ 8.000+ 8.000+ 9.000+ 9.000+ 9.000),
(1/15)( .000+ 1.000+ 2.000+ 2.000+ .000+ 6.000+ 7.000+ 8.000+ 6.000+ 7.000+ 8.00
0+ 9.000+ 7.000+ 8.000+ 9.000)
Cluster centers:
ClusterCenter[0]=(0.000000,1.000000)
ClusterCenter[1]=(5.866667,5.333333)
推荐 0
本文由 张子良 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

0 个评论

要回复文章请先登录注册