如何在BI平台中实现自动分级预警?

浏览: 692

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

在互联网+时代,一切都讲究“数据化”,而真正用好“数据”,不仅仅是“人看数据”,更要“数据追人”,才能让“数据落地”,如此才称得上将产品/运营/服务等实现“数据化”。

那么,如何做到“数据追人”,特别是有针对性、差异化的“数据追人”呢?观远数据最新推出的「智能预警(数据集预警)」功能,可以很好地满足广大用户的这一需求。

案例背景

某连锁门店的区域经理助理小朱为当前区域门店创建了多个重要指标看板,但无论是区域经理还是店长,因为日常工作太忙,经常没空细看所有数据看板。小朱希望对于重要指标,特别是有异常的重要指标,可以单独预警。

小朱了解了很多BI数据分析平台,发现大部分平台所说的预警,更多还是在图表上设置条件格式,将异常数据在图表上进行高亮或特殊标注,并没有推送到人的功能。

而有的BI平台,虽说提供了预警消息推送到人的功能,其实现方式和操作方法类似于普通的卡片预警功能,只能设置简单的预警规则。但在实际业务场景中,还是有诸多不便之处,包括但不限于设置规则不灵活、无法“千人千面”地设置预警消息等。

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

对此,行业的通用方案是,针对不同门店的预警触发条件逐一设置,5个门店设置5条预警规则(如下图);如果希望将不同门店的消息推送给对应门店的人,则更繁琐,需要创建5个单独的预警,并且每个预警里的预警规则和通知消息都要逐一设置。

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

观远数据最新推出的智能预警功能,基于数据集创建预警规则,可以轻松做到行级别的差异化预警设置。这种新预警方式相比于目前行业通用的预警实现方式,有诸多优化和独特之处,下面我们着重挑几点来介绍说明:

优点1:相同预警规则、不同应用对象,预警规则只需设置1次。

如上述小朱的业务场景,他们需要门店销售额未达标的情况下能触发预警。这在行业通用方案中,5个门店就需要设置5次。用观远数据集预警来设置的话,只需要设置一条预警规则即可(如下图),因为数据集预警支持两个字段间的对比,而行业通用方案基本只能支持一个指标字段与一个固定值作对比。

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

优点2:相同属性、不同用户,收件人只需添加1次。

观远数据集预警的智能之处还在于收件人支持根据字段或属性来匹配,可以根据不同分发规则动态发送给对应的用户。

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

如上述小朱的业务场景,想要把5个店铺的异常预警发给对应店铺的人员,需要创建5个预警,设置5次,同时,如果每个店铺有10个员工,则收件人处需要将所有员工账户一一添加;而观远数据集预警只需设置一次,大大提高了工作效率。

当然,如此使用的前提是预警推送数据集中,包含用户属性相关字段。如上文中的case数据,需要使用ETL进行处理,添加相关信息。

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

处理后的数据:

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

如果希望未达标的门店信息推送给对应门店所有人,则只需如下图配置:

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

未达标的门店是门店1、门店3、门店5,根据如图配置,系统会寻找用户属性中“所属门店”分别是对应门店id的用户,并推送预警信息。如果每个门店有10个员工,则这三个门店各自的10个员工都会收到信息。

而如果只想将该条信息推送给门店的店长,也可以进行相应的配置:

若数据集中有直接对应到店长的字段(如工号),则可以用相关用户属性直接关联;或者,在上图所示的收件人分发条件基础上,再增加一个条件,直接指定某用户属性的属性值,如下图示意:

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

优点3:相同预警规则、不同用户、不同预警消息,消息编辑只需设置1次。

数据集预警支持对内容进行差异化定制:通过插入字段内容,可以让每个收件人收到的信息都是与其相关的数据,做到千人千面。

举例:如下图所示设置预警消息,

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

则门店1的收件人收到的信息是:

“你负责的门店:门店1,昨日销售额为62154,未达到目标销售额70000,……”

而门店3的收件人收到的信息是:

“你负责的门店:门店3,昨日销售额为51262,未达到目标销售额55000,……”

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

功能使用拓展:分级预警

数据集预警因为其规则灵活配置的特性,还可以应用在更多业务场景中,比较典型的就是分级预警。根据数据异常的严重程度通知不同层级的负责人,层层追责,级级落地。如门店的达标情况,1天未达标仅通知店长,连续2天未达标通知片区主管,连续3天未达标就要通知区域经理。

数据异常自动分级推送,这个「数据集智能预警」功能pick一下!

此外,观远数据集预警的通知渠道,也支持多种形式,除传统的邮件渠道外,还包括钉钉、企业微信、云之家等各种OA应用通知,充分支持“数据追人”的落地,让异常数据的预警可以第一时间到达相关人员的手上,从而更早、更快做出应对。

推荐 1
本文由 观远数据 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

0 个评论

要回复文章请先登录注册