观感 | 与品觉老师聊数据的本质(二)

浏览: 1029

上一篇笔记聊到数据驱动决策是一把手&CEO工程,以及DT时代CIO=Chief Innovation Officer的角色升级。

链接文字观感 | 与品觉老师聊数据的本质(一)

今天我们来聊聊如何让创新落地,通过“自动化”的数据分析与决策,让“人”释放出来,专注于更有创意的思考以及更有温度的服务。

与品觉老师几次都聊到他当年如何推动阿里巴巴的数据化运营,感慨颇深,在《数据的本质》这本书里面他也有分享,大家可以找来读一读。

s29553395.jpg

《数据的本质》

作者:车品觉

大数据专家,前阿里巴巴集团副总裁、现红杉资本专家合伙人


书中有一个很小的场景,但让我印象深刻:

品觉团队经常遇到的一个挑战,是数据生产与制作流程需要大量数据清洗整理与准备即ETL(Extract/Transform/Load)的处理过程,即便是阿里般强执行的节奏下,一份简单的分析报告也需要三天时间才能完成数据的预处理。结果业务部门自然态度冷淡,数据驱动不起来。


ali.jpg

(图片来源于网络)

类似的场景处处都是,怎么办?

只好来一场硬仗!

首先争取到足够的“弹药”和“舆论”,包括强力的资源和人力投入、足够的时间,还包括马云和彭蕾等关键高层的理解共识;然后,内部不断研发迭代,上下游配套展开一系列的业务流程创新;最后,在“试错-升级”的反复磨合过程中,实现了大部分智能分析与决策的过程,从数据自动预处理、报表生成、维度自决,到问题自动排查、异常预警各个环节,全面驱动业务决策。

EAcx-fypatmw5983663.jpg

(图片来源于网络)

这场仗打了多久?

好几年。

还好,终于迎来胜利的果实,这套数据决策体系系统性的提升了集团数据化决策的能力,为阿里在未来5-10年的持续增长打了下扎实的基础。

阿里是全球互联网领域的顶级公司,那么传统行业的大鳄们呢?比如肯德基、星巴克、优衣库等这些500强巨头。

kfc.png

(图片来源于网络)


我和团队曾经为很多这类500强巨头提供过商业数据分析的产品,他们基本代表了传统领域里面数据驱动决策的最高水准。

这些公司的典型特点,除了管理基础很好,还有两个容易被忽视的“人”的因素:

第一,有一个很庞大的数据分析团队,包括各个业务部门里面自己能分析数据的业务人员,业务部门专门的需求分析人员,专门的数据分析师,还包括数据仓库与商业智能BI团队专门的ETL工程师、BI工程师、数据仓库工程师、大数据团队的算法科学家,以及专门的IT支持人员与管理运维人员等等;

第二,在业务的末梢,这些公司有很多理解精细化管理的运营人员,比如店长、督导、区域经理等角色,他们具备相当的看懂数据、解读业务、做出合理决策的能力。


table.png

(图片来源于网络)


这两点与“人”有关的因素,正是“数据驱动决策”在这些500强传统公司能够产生价值的核心基础。

他山之石,可否攻玉?阿里巴巴与肯德基KFC,都是各自领域里面全球10段级别的选手。他们构建数据决策体系的路径,能否直接借鉴?


根据过去十多年在美国与中国两地的实践,我的判断是不大可能。要构建阿里或肯德基这样的数据分析与决策体系,需要有大量懂大数据技术以及懂大数据应用的人,经过长时间的不断迭代积累,形成数据驱动决策的文化。而国内绝大部分的公司并不具备这样的人力基础,而且外部环境的快速变化,也不允许公司在黑暗之中长时间的探索与试错。

当然,硬币的另外一面是极大的利好,因为分工愈加专业,越来越多像观远数据这样的“军工厂”,专注于提供从数据到决策的“核武器”(“观远AI+BI 让决策更智能”)。在这个时代,绝大部分公司都没有必要自己来重复造轮子,只需要聚焦主营业务,与外部合作伙伴来共建数据分析与决策体系,构建面向未来的企业大脑。

what-is-security-automation-ecurity-automation-solution.jpeg


在我们看来,面向未来的企业数据分析与决策体系,最重要的关键词之一是“自动化”。

  • 能否自动的接入数据,并自动进行数据同步(Data Sync)以及处理(Data Prep),保证数据的准确与实时?


  • 能否将业务分析与决策的过程形成可自动执行的分析链路,进一步对关键指标进行监控,让数据追“人”,打通微信/钉钉,形成反馈的闭环?(Smart Alert)


  • 能否透过数据的可视化呈现,自动探测到数据背后的业务“异常”,辅助业务快速决策?(Outlier Dectection)


以我们服务的多家知名连锁零售类品牌为例,门店从数百家到数千家规模,业务变化频度极高、线上线下深度融合。传统的BI更多提供“站桩式”的看数据,层层传递,级级沟通,既懂业务又懂分析的专家凤毛麟角,往往成为分析瓶颈。当他发现某个门店的日商(日商:即每日销售额,连锁零售最核心的指标)有异常,进一步发掘可能的原因,再进行分析决策的时候,问题已经发生了好几天,错失了第一时间处理的机会。

而这样的场景每天都在不同的门店发生。


未来的企业决策大脑,必将是通过“自动化”的方式,进行数据全链路的打通与分析,80%以上的业务可以在第一时间自动形成决策结论,并将需要采取的行动建议自动推送给到相应的管理与运营人员,将每个人从繁杂的系统与数据中释放出来,而专心为客户提供更有温度的服务。

今天先聊到这,大家有任何不同的视角、建议或希望后续探讨哪些主题,麻烦留言,期待您的反馈。



本文作者


苏春园

观远数据创始人兼CEO

关于作者:

卡内基梅隆大学信息技术与管理专业硕士,曾担任纳斯达克上市公司MicroStrategy微策略全球高管&中国研发总裁,为多家500强客户提供商业智能与大数据分析产品与方案。观远数据是国内新锐的数据分析公司,获得多家全球顶级VC投资,通过AI+BI的一站式商业智能分析平台,让企业决策更智能。

推荐 4
本文由 观远数据 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

1 个评论

学习

要回复文章请先登录注册