用数据帮公司省1000万!看看你会不会错过机会

浏览: 1775

想了解自己数据分析能力到了哪一层,戳{数据分析6个能力等级}

想和大牛学更多思维方式,戳{和管理咨询顾问学思考}


这是一个真实案例,月薪5,6,7K的同学都看看,自己是怎么错过机会的

 

——平均?为什么只看平均——

 

小王是一个酒店的运营专员,他要统计n张报表供运营和市场部的人看。其中有一张表叫《会员消费情况表》,要统计各类会员的消费情况,比如我们有10万名钻石会员,上月有消费2万人,每人2个订单,每个订单220元,类似这种数据。

 

 

然而小王却很好奇,为什么只看平均数呢,白痴都知道钻石级会员比金卡级消费多,金卡级比普通卡消费多,如果再拆细点会怎样??他好奇的自己提了份需求,跑了全体会员过往1年内消费情况,按年消费总额的高低排序,分成10等份。奇葩的事情产生了。

 

 

居然排名最底的10%的会员,每笔订单品均只有100元,比我们酒店门市价低60%还要多!话说我们家什么时候有这么便宜的房间了?市场部什么时候做过这么大力度的促销了?这是一帮什么人,为什么正好在有这么大力度促销的时候消费?小王心里充满了好奇。这些人每多一个,公司要亏100多块,全部算起来,公司要亏1500多万,乖乖,好大一笔钱,似乎有动力继续研究下去。

 

 

——好奇心是分析的驱动力——

 

好奇1:有没有人故意薅羊毛的?从数据上看,这些垃圾会员平均只消费1.05次,也就说有人消费2次以上,那么这么低的折扣又消费两次以上,很有可能是故意在薅羊毛,比如集中n个订单用高端会员卡下单套优惠。因此第一步要先区分垃圾用户里的卡等级,把高端会员卡剃出来。果然,一分析之下,找出来近万张羊毛卡。

 

 

好奇2:什么活动送了这么大力度的券?剩下的会员里,既然不能从高端卡捞好处,肯定就是活动送的券,那么什么活动会有这么大力度的券?第二步,查回市场部,业务部过往1年内所有的推广活动,看在什么时间,什么地点,什么渠道派了券,重点关注是否规则上有可以叠加使用的券。再看回这些垃圾客户。结果是发现有两类典型的场景,一种是新店引流,力度较大;另一种就是多种券叠加使用了,并不在新店引流时发生。

 

 

好奇3:新店引流有战略意义,哪些平时出来蹭的是什么鬼?小王并没有冒冒失失的把分析结果丢上去,因为新店引流是件政治正确的事情,即使亏本,说不定市场部也很想做。他把目光投到了那些非新店消费的用户,进一步了解:这是些什么人?经分析,这些人注册时间早于消费时间,只在有券的时候才消费,很有可能是长期蹲点等优惠,看着有好处才消费的老油条。

 

 

好奇4:既然这些可叠加的券这么有问题,为什么之前没人发现?然而,小王并没有马上把这个结果呈出来,因为既然这些券有这么大问题,被大量套走,那为什么之前没有人发现?市场部不是每次活动都要做总结吗?他仔细翻回了之前的汇报,发现在垃圾客户集中用券的时候,对促销的考核都是看整个活动的效果,整个活动拉动多少活跃和多少客户,没人细看到底这些券去了哪里,高价值的客户也在用。“还好没有贸然送出去,不然肯定被市场部喷,说取消了券会影响高价值用户消费的。”

 

 

好奇5:如果我就不送了,会怎样?那是否我不送了,高价值用户就不会消费了呢?小王带着这个疑问,展开第五步:看高价值用户的消费习惯。结果发现,高价值用户主要是男性,商旅用户,60天内重复消费比例非常高,消费节奏感很强,并不会根据发券的节奏消费(已用的只是刚好凑上时间了)。那么可以大胆假设,即使没有券,这些人也会继续消费。

 

 

至此,垃圾用户的情况已很清晰了:

1.      存在薅羊毛用户,需从规则上限制

2.      投放大额优惠券时不区分过往消费行为,会吸引大量老油条套利。

3.      高价值用户奖励方式可以进一步升级,减少券硬投放,降低成本。

经综合测算,优化优惠券投放,砍掉薅羊毛用户后,可以为公司净节省成本1000万以上。小王获得了领导的嘉奖,在入职第二年升职运营分析主管。(*^__^*)

 

 

——血淋淋的真相是什么——

 

血淋淋的真相是:这个问题不是月薪5千的运营专员小王发现的!更没有一个月薪5千的小王做出分析与对策,更没有一个月薪5千的小王因此升职加薪。这个分析是一个年薪40万的专业咨询顾问老董做出来的。实际上在老董接手这个项目以前,客户的运营部分有好几个小王,小张,小李,已经看这个报表看了好几年了,没人发现问题,也没人提出问题,更没有人思考解决问题。

 

 

老董和陈老师提及此事,令陈老师唏嘘不已。这个分析过程简单到不能再简单,只要加减乘除和分组对比就可以了;也没有用到很高深的知识,一篇800字的文章就能讲清楚,各位看官即使不懂行也能看明白,然而,为什么专员,小王,小张,小李们会放弃这么好的机会,还要等着公司花大价钱请咨询顾问来解决问题呢?

 

 

抱着这个好奇心,陈老师找老董要了一些数据,脱敏后做了几个问题,口头问过一些表哥表姐,发现以下几个坑点,极大阻碍了他们深入下去:

 

 

坑点1:没有好奇心。不会主动去看细节数据。70%的专员坑死在这里,不会主动思考

 

坑点2:业务部敏感。比如看到消费1次100元,想着那消费低的人就是少啊,联系不到“这只有常规房价一半,市场部什么时候投放过这么大力度的券”。这里大概坑掉15%的人。

 

坑点3:不会做假设,想不到这里其实至少有三个场景。一股脑的把数据怼出去,结果被领导:“可能是这样啊,可能是那样啊,虽然低但也可能有战术用途啊顶了回来”这里大概坑掉10%的人。

 

 

坑点4:不会反向验证。既然问题这么大,为什么之前没人发现;这句话大部分专员们想不到,对一个问题缺少反向验证的想法。这里大概坑掉5%的人。到这里专员们全军覆没了。

 

 

坑点5:不会追问可能性。如果去掉会怎样?做了这一步,才能让自己的分析站得住脚,正向论述:“做了不划算”加上反向验证“不做其实也不差”,两者结合就能让自己的分析非常坚实,不至于被人用随便几个理由搪塞。

 

 

如果真要是小王能发现这种问题,他也是老王了——by 老董

 

是啊,小王们一般不会认真思考手头的数据。他们有空了会上网加各种运营讨论群斗图,问人要书单,抱怨工作无聊,问是不是要学个R,python什么的的——by 陈老师

 

 

搞笑的是,在陈老师测试的30几个专员里,有20+个都对现有工作不满,真有至少15个在咨询陈老师是不是要学个R或者python……好吧,陈老师想说的是,即使大家提升了代码能力,还是要学会主动思考,数据分析,数据和分析是同样重要的,只会统计一个数字,还是达不到分析的要求,还是很难升职的。


系统锻炼分析能力,戳:{数据分析师的第一门实战课}

最新文章,可关注陈老师公众号:接地气学堂





作者介绍:陈老师,在咨询行业打拼了9年,在如何诊断经营问题、建立分析体系、解决专项问题上有超过30个大型项目积累与实战,天善智能特邀专家。


数据分析职场路上有困扰吗?不妨到《数据分析师八大能力培养课程https://edu.hellobi.com/course/272 里聊聊!

视频课程特色:

从真实数据分析工作场景出发,训练实战能力

启发式教学+大量实际操练,培养属于自己的能力

不依赖于某个具体技术,也适合对数据分析感兴趣的学生、业务部门人士学习

推荐 11
本文由 陈老师 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

8 个评论

喜欢这种案例,发给我们老板看了
哈哈哈,老板肯定喜欢这种啊,不用指点员工自己动脑子想办法
来来来,用脑的话,团队消费应该是一个用户下一张n人参加的一张单,而不是一个用户下多张优惠力度大的单;一个用户多张优惠力度大的单本身就是非正常行为。其他的完全看不到逻辑,无法回复。住过和知道后台的数据结构,数据流向是两码事,减少YY,认真了解下系统是个好事情
正是因为只靠业务部门的:“见过”“住过”会经常出现判断错误,所以才需要先拉用户结构的数据出来看基础情况,而不是“见过”“住过”就直接下判断了,这是数据分析师职责所在,大家引以为戒
不错
然而这篇发到知乎以后引发了键盘侠的狂喷,汗死了,键盘侠们连用户,订单,人均,店均,都分不清就开喷了,都不知道从哪里解释起比较好,只能总结一个结论就是基础数据常识很重要,哈哈哈
陈老师不必在意,没必要太多解释,懂的人会懂,不懂得随他去吧,总之我认为陈老师的文章都是干货满满,继续支持您。也希望陈老师多多分享啊,学习ing
其实两个喷子喷的,倒是典型的两种对待数据的错误思路,一种是是“我见过”系列,另一种是做的越多越好,本质上一个是源于不懂,一个是源于没经验。曾经有个项目,数据团队上来就给用户打了500标签,导致项目进度过半,做了大半年了老板也没看到到底成绩在哪,被批的很惨很惨,回来把这些惨死的项目归纳一下,也分享给大家

要回复文章请先登录注册