机器学习算法的随机数据生成

浏览: 449

作者:刘建平Pinard

链接:https://www.cnblogs.com/pinard/p/6047802.html

编辑:石头

转载自公众号:机器学习算法那些事

在学习机器学习算法的过程中,我们经常需要数据来验证算法,调试参数。但是找到一组十分合适某种特定算法类型的数据样本却不那么容易。还好numpy, scikit-learn都提供了随机数据生成的功能,我们可以自己生成适合某一种模型的数据,用随机数据来做清洗,归一化,转换,然后选择模型与算法做拟合和预测。下面对scikit-learn和numpy生成数据样本的方法做一个总结。

完整代码参见github:

https://github.com/ljpzzz/machinelearning/blob/master/mathematics/random_data_generation.ipynb


目录


1. numpy随机数据生成API

2. scikit-learn随机数据生成API介绍    

3. scikit-learn随机数据生成实例

1. numpy随机数据生成API

numpy比较适合用来生产一些简单的抽样数据。API都在random类中,常见的API有:

1) rand(d0, d1, ..., dn) 用来生成d0×d1×...dn维的数组 。数组的值在[0,1)之间

例如: np.random.rand(3,2,2),输出如下3×2×2的数组

array([[[ 0.49042678,  0.60643763],
        [ 0.18370487,  0.10836908]],

       [[ 0.38269728,  0.66130293],
        [ 0.5775944 ,  0.52354981]],

       [[ 0.71705929,  0.89453574],
        [ 0.36245334,  0.37545211]]]) 

2) randn((d0, d1, ..., dn) 也是用来生成d0xd1x...dn维的数组。不过数组的值服从N(0,1)的标准正态分布。

例如:np.random.randn(3,2),输出如下3x2的数组,这些值是N(0,1)的抽样数据。

array([[-0.5889483 , -0.34054626],
       [-2.03094528, -0.21205145],
       [-0.20804811, -0.97289898]])

如果需要服从的正态分布,只需要在randn上每个生成的值x上做变换即可 。

例如: 2*np.random.randn(3,2) + 1,输出如下3x2的数组,这些值是N(1,4)的抽样数据。

array([[ 2.32910328, -0.677016  ],
       [-0.09049511,  1.04687598],
       [ 2.13493001,  3.30025852]])

3) randint(low[, high, size]),生成随机的大小为size的数据,size可以为整数,为矩阵维数,或者张量的维数。值位于半开区间 [low, high)。

例如:np.random.randint(3, size=[2,3,4])返回维数维2x3x4的数据,取值范围为最大值为3的整数。

      array([[[2, 1, 2, 1],
          [0, 1, 2, 1],
          [2, 1, 0, 2]],

          [[0, 1, 0, 0],
          [1, 1, 2, 1],
          [1, 0, 1, 2]]])

再比如: np.random.randint(3, 6, size=[2,3]) 返回维数为2x3的数据。取值范围为[3,6).

                                    array([[4, 5, 3],
                                        [3, 4, 5]])

4) random_integers(low[, high, size]),和上面的randint类似,区别在于取值范围是闭区间[low, high]。

5) random_sample([size]),返回随机的浮点数,在半开区间 [0.0, 1.0)。如果是其他区间[a,b),可以加以转换(b - a) * random_sample([size]) + a

例如: (5-2)*np.random.random_sample(3)+2 返回[2,5)之间的3个随机数。

array([ 2.87037573,  4.33790491,  2.1662832 ]) 

2. scikit-learn随机数据生成API介绍

scikit-learn生成随机数据的API都在datasets类之中,和numpy比起来,可以用来生成适合特定机器学习模型的数据。常用的API有:

1) 用make_regression生成回归模型的数据

2) 用make_hastie_10_2,make_classification或者make_multilabel_classification生成分类模型数据

3) 用make_blobs生成聚类模型数据

4) 用make_gaussian_quantiles生成分组多维正态分布的数据

3. scikit-learn随机数据生成实例

3.1 回归模型随机数据

这里我们使用make_regression生成回归模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数),noise(样本随机噪音)和coef(是否返回回归系数)。例子代码如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_regression

# X为样本特征,y为样本输出, coef为回归系数,共1000个样本,每个样本1个特征
X, y, coef =make_regression(n_samples=1000, n_features=1,noise=10, coef=True)
# 画图
plt.scatter(X, y,  color='black')plt.plot(X, X*coef, color='blue',linewidth=3)plt.xticks(())plt.yticks(())plt.show()


输出的图如下:

3.2 分类模型随机数据

这里我们用make_classification生成三元分类模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数), n_redundant(冗余特征数)和n_classes(输出的类别数),例子代码如下:


import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_classification

# X1为样本特征,Y1为样本类别输出, 共400个样本,每个样本2个特征,输出有3个类别,没有冗余特征,每个类别一个簇
X1, Y1 = make_classification(n_samples=400, n_features=2, n_redundant=0,                             n_clusters_per_class=1, n_classes=3)plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)plt.show()

输出的图如下:

3.3 聚类模型随机数据

这里我们用make_blobs生成聚类模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数),centers(簇中心的个数或者自定义的簇中心) 和 cluster_std(簇数据方差,代表簇的聚合程度)。例子如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs

# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共3个簇,簇中心在[-1,-1], [1,1], [2,2], 簇方差分别为[0.4, 0.5, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [1,1], [2,2]], cluster_std=[0.4, 0.5, 0.2])plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)plt.show()


输出的图如下:

3.4 分组正态分布混合数据

  我们用make_gaussian_quantiles生成分组多维正态分布的数据。几个关键参数有n_samples(生成样本数), n_features(正态分布的维数),mean(特征均值),cov(样本协方差的系数), n_classes(数据在正态分布中按分位数分配的组数)。 例子如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_gaussian_quantiles
#生成2维正态分布,生成的数据按分位数分成3组,1000个样本,2个样本特征均值为1和2,协方差系数为2
X1, Y1 = make_gaussian_quantiles(n_samples=1000, n_features=2, n_classes=3, mean=[1,2],cov=2)plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)

输出图如下:


以上就是生产随机数据的一个总结,希望可以帮到学习机器学习算法的朋友们。


推荐阅读:

  1. scikit-learn K近邻法类库使用小结

  2. 机器学习算法常用指标总结

  3. 2018年终精心整理|人工智能爱好者社区历史文章合集(作者篇)

  4. 2018年终精心整理 | 人工智能爱好者社区历史文章合集(类型篇)

公众号后台回复关键词学习

回复 免费                获取免费课程

回复 直播                获取系列直播课

回复 Python           1小时破冰入门Python

回复 人工智能         从零入门人工智能

回复 深度学习         手把手教你用Python深度学习

回复 机器学习         小白学数据挖掘与机器学习

回复 贝叶斯算法      贝叶斯与新闻分类实战

回复 数据分析师      数据分析师八大能力培养

回复 自然语言处理  自然语言处理之AI深度学习

推荐 0
本文由 人工智能爱好者社区 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

0 个评论

要回复文章请先登录注册