从零开始学人工智能(24)--Python · 朴素贝叶斯(三)· GaussianNB

浏览: 697

作者:射命丸咲    Python 与 机器学习 爱好者

知乎专栏:https://zhuanlan.zhihu.com/carefree0910-pyml 

个人网站:http://www.carefree0910.com 

往期阅读:

机器学习综述

从零开始学人工智能(21)--数学 · CNN · 从 NN 到 CNN 

从零开始学人工智能(22)--Python · 朴素贝叶斯(一)· 框架

从零开始学人工智能(23)--Python · 朴素贝叶斯(二)· MultinomialNB

GitHub 地址:https://github.com/carefree0910/MachineLearning/blob/master/b_NaiveBayes/Vectorized/GaussianNB.py

========================

本章主要介绍连续型朴素贝叶斯—— GaussianNB 的实现。在有了实现离散型朴素贝叶斯的经验后,实现连续型朴素贝叶斯模型其实只是个触类旁通的活了。算法的叙述已经在这篇文章中进行过说明,下面就直接看看如何进行实现

由 GaussianNB 的算法可知,在实现 GaussianNB 之前、我们需要先实现一个能够计算正态分布密度和进行正态分布极大似然估计的类:

import numpy as np

from math import pi, exp

# 记录常量以避免重复运算

sqrt_pi = (2 * pi) ** 0.5

class NBFunctions:

   # 定义正态分布的密度函数

    @staticmethod

    def gaussian(x, mu, sigma):

         return np.exp(

            -(x - mu) ** 2 / (2 * sigma)) / (sqrt_pi * sigma ** 0.5)

    # 定义进行极大似然估计的函数

    # 它能返回一个存储着计算条件概率密度的函数的列表

    @staticmethod

    def gaussian_maximum_likelihood(labelled_x, n_category, dim):

        mu = [np.sum(

            labelled_x[c][dim]) /

            len(labelled_x[c][dim]) for c in range(n_category)]

        sigma = [np.sum(

            (labelled_x[c][dim]-mu[c])**2) /

            len(labelled_x[c][dim]) for c in range(n_category)]

        # 利用极大似然估计得到的和、定义生成计算条件概率密度的函数的函数 func

        def func(_c):

            def sub(xx):

                return NBFunctions.gaussian(xx, mu[_c], sigma[_c])

            return sub

        # 利用 func 返回目标列表

        return [func(_c=c) for c in range(n_category)]

对于 GaussianNB 本身,由于算法中只有条件概率相关的定义变了、所以只需要将相关的函数重新定义即可。此外,由于输入数据肯定是数值数据、所以数据预处理会简单不少(至少不用因为要对输入进行特殊的数值化处理而记录其转换字典了)。考虑到上一章说明 MultinomialNB 的实现时已经基本把我们框架的思想都说明清楚了,在接下来的 GaussianNB 的代码实现中、我们会适当地减少注释以提高阅读流畅度(其实主要还是为了偷懒)

from b_NaiveBayes.Original.Basic import *

class GaussianNB(NaiveBayes):

    def feed_data(self, x, y, sample_weight=None):

        # 简单地调用 Python 自带的 float 方法将输入数据数值化

        x = np.array([list(map(

            lambda c: float(c), sample)) for sample in x])

        # 数值化类别向量

        labels = list(set(y))

        label_dic = {label: i for i, label in enumerate(labels)}

        y = np.array([label_dic[yy] for yy in y])

        cat_counter = np.bincount(y)

        labels = [y == value for value in range(len(cat_counter))]

        labelled_x = [x[label].T for label in labels]

        # 更新模型的各个属性

        self._x, self._y = x.T, y

        self._labelled_x, self._label_zip = labelled_x, labels

        self._cat_counter, self.label_dic = (

            cat_counter, {i: _l for _l, i in label_dic.items()}

        self.feed_sample_weight(sample_weight)

可以看到,数据预处理这一步确实要轻松很多。接下来只需要再定义训练用的代码就行,它们和 MultinomialNB 中的实现也大同小异: 

# 定义处理样本权重的函数

   def feed_sample_weight(self, sample_weight=None):

        if sample_weight is not None:

            local_weights = sample_weight * len(sample_weight)

            for i, label in enumerate(self._label_zip):

                self._labelled_x[i] *= local_weights[label]

    def _fit(self, lb):

        n_category = len(self._cat_counter)

        p_category = self.get_prior_probability(lb)

        # 利用极大似然估计获得计算条件概率的函数、使用数组变量 data 进行存储

        data = [

            NBFunctions.gaussian_maximum_likelihood(

                self._labelled_x, n_category, dim)

                    for dim in range(len(self._x))]

        self._data = data

        def func(input_x, tar_category):

            # 将输入转换成二维数组(矩阵

            input_x = np.atleast_2d(input_x).T

            rs = np.ones(input_x.shape[1])

            for d, xx in enumerate(input_x):

                rs *= data[d][tar_category](xx)

            return rs * p_category[tar_category]

        # 由于数据本身就是数值的,所以数据转换函数只需直接返回输入值即可

    @staticmethod

    def _transfer_x(x):

        return x

至此,连续型朴素贝叶斯模型就搭建完毕了

连续型朴素贝叶斯同样能够进行和离散型朴素贝叶斯类似的可视化,不过由于我们接下来就要实现适用范围最广的朴素贝叶斯模型:混合型朴素贝叶斯了,所以我们这里不打算进行 GaussianNB 合理的评估、而打算把它归结到对混合型朴素贝叶斯的评估中

希望观众老爷们能够喜欢~



公众号后台回复关键词学习

回复 人工智能          揭开人工智能的神秘面纱

回复 贝叶斯算法      贝叶斯算法与新闻分类

回复 机器学习          R&Python机器学习

回复 阿里数据          阿里数据系列课程

回复 Python            Python机器学习案例实战

回复 Spark              征服Spark第一季

回复 kaggle             机器学习kaggle案例

回复 大数据             大数据系列视频

回复 数据分析         数据分析人员的转型

回复 数据挖掘         数据挖掘与人工智能

回复 机器学习         R&Python机器学习

回复 阿里数据         阿里数据系列课程

回复 R                     R&Python机器学习入门


推荐 0
本文由 人工智能爱好者社区 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

0 个评论

要回复文章请先登录注册