字符串 Intern 机制

浏览: 1119

字符串在 Python 中是最简单也是最常用的数据类型之一,在 CPython 中字符串的实现原理使用了一种叫做 Intern(字符串驻留)的技术来提高字符串效率。究竟什么是 intern 机制,这种机制又是通过什么方式来提高字符串效率的呢?希望这篇文章能够抛砖引玉。

先来看一段代码:

>>> s3 = "hello!"
>>> s4 = "hello!"
>>> s3 is s4
False
>>> id(s3)
80325968L
>>> id(s4)
80326048L

s3 和 s4 虽然值是一样的,但确确实实是两个不同的字符串对象,Python 会为它们俩各自分配一段内存空间,假设程序中存在大量值相同的字符串,系统就不得不为每个字符串重复地分配内存空间,显然,对系统来说是一种无谓的资源浪费。为了解决这种问题,Python 引入了 intern 机制。

image.png

再来看:

>>> s3 = intern('hello!')
>>> s4 = intern('hello!')
>>> s3 is s4
True
>>> id(s3)
80325968L
>>> id(s4)
80325968L

intern 是 Python 中的一个内建函数,该函数的作用就是对字符串进行 intern 机制处理,处理后返回字符串对象。我们发现但凡是值相同的字符串经过 intern 机制处理之后,返回的都是同一个字符串对象,这种方式在处理大数据的时候无疑能节省更多的内存空间,系统无需为相同的字符串重复分配内存,对于值相同的字符串共用一个对象即可。

image.png

其实,实现 Intern 机制的方式非常简单,就是通过维护一个字符串储蓄池,这个池子是一个字典结构,如果字符串已经存在于池子中了就不再去创建新的字符串,直接返回之前创建好的字符串对象,如果之前还没有加入到该池子中,则先构造一个字符串对象,并把这个对象加入到池子中去,方便下一次获取,用伪代码就可以描述为:

intern_pool = {}
def intern(s):

if s in intern_pool:
return intern_pool[s]
else:
obj = PyStringObject(s)
intern_pool[s] = obj
return obj

在主流面向对象的编程语言中intern 机制对于处理字符串已经成为一种标配,通过 intern 机制可以提高字符串的处理效率,当然,解释器内部很对 intern 机制的使用策略是有考究的,有些场景会自动使用 intern ,有些地方需要通过手动方式才能启动。比如:

>>> s1 = "hello"
>>> s2 = "hello"
>>> s1 is s2
True
>>> id(s1)
72320704L
>>> id(s2)
72320704L

这段代码就是 Python自动使用了intern机制的结果。

关注公众号『Python之禅』(id:vttalk)获取最新文章

python之禅

推荐 0
本文由 刘志军 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

0 个评论

要回复文章请先登录注册