Adaboost从原理到实现(Python)

浏览: 2735

(更多消息关注公众号:机器学习算法与Python学习)

首先来回答AdaBoosting的基本思想

通俗地讲就是综合某些专家的判断,往往要比一个专家单独的判断要好(三个臭皮匠顶过诸葛亮-周志华《机器学习第八章》)。在”强可学习”和”弱可学习”的概念上来说就是我们通过对多个弱可学习的算法进行”组合提升或者说是强化”得到一个性能赶超强可学习算法的算法。


其次回答Boosting的思路

1.找到一个弱分类器,分类器简单,快捷,易操作(如果它本身就很复杂,而且效果还不错,那么进行提升无疑是锦上添花,增加复杂度,甚至上性能并没有得到提升,具体情况具体而论)。

2.迭代寻找N个最优的分类器(最优的分类器,就是说这N个分类器分别是每一轮迭代中分类误差最小的分类器,并且这N个分类器组合之后是分类效果最优的。)。

在迭代求解最优的过程中我们需要不断地修改数据的权重(AdaBoost中是每一轮迭代得到一个分类结果与正确分类作比较,修改那些错误分类数据的权重,减小正确分类数据的权重 ),后一个分类器根据前一个分类器的结果修改权重在进行分类,因此可以看出,迭代的过程中分类器的效果越来越好,所以需要给每个分类器赋予不同的权重。最终我们得到了N个分类器和每个分类器的权重,那么最终的分类器也得到了。


归纳算法流程

输入:训练数据集M*N(M为样本数量,N为特征数量)弱,其中xi表示数据i[数据i为N维],yi表示数据的分类为yi,Y={-1,1}表示xi在某种规则约束下的分类。

输出:最终的分类器G(x)


1. 初始化训练数据的权值分布(每个样本数据权重均等),D1 = (W11,W12,W13,...,W1M), W1i=1/M, ,M表示数据的个数,i=1,2,3…M。 

2. j=1,2,3,…,J(表示迭代的次数/或者最终分类器的个数,取决于是否能够使分类误差为0)。

(a)使用具有权值分布Dj的训练数据集学习,得到基本的分类器:Gj(x);

(b) 计算Gj(x)在训练集上的分类误差率

Clipboard Image.png

求的是分错类别的数据的权重值和,表示第i个数据的权重Dj[i];

(c)计算Gj(x)第j个分类器的系数,,ej表示的是分类错误率。


Clipboard Image.png

(d)更新训练数据集的权重Dj+1,数据集的权重根据上一次权重进行更新, i=1,2,…M

Clipboard Image.png

Z是规范化因子,他表示所有数据权重之和,它使Dj+1成为一个概率分布。


3. 构建基本分类器的线性组合

Clipboard Image.png


Boosting与Bagging对比:

AdaBoost泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整,但是对离群点敏感。

Bagging基于数据随机重抽样的分类器构建方法,原始数据集中重新选择S次得到S个新数据集,将磨沟算法分别作用于这个数据集,最后进行投票,选择投票最多的类别作为分类类别。

Boosting关注那些已有分类器错分的数据来获得新的分类器,Bagging则是根据已训练的分类器的性能来训练的。Boosting分类器权重不相等,权重对应与上一轮迭代成功度Bagging分类器权重相等。


代码实现(由《机器学习实战》改编)


# -*- coding:utf-8 -*- 
from numpy import*
class Adaboosting(object):
def loadSimpData(self):
datMat = matrix(
[[1., 2.1],
[2., 1.1],
[1.3, 1.],
[1., 1.],
[2., 1.]])
classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
return datMat, classLabels

def stumpClassify(self, datMat, dimen, threshVal, threshIneq):
# print "-----data-----"
# print datMat
retArr = ones((shape(datMat)[0], 1))
if threshIneq == 'lt':
retArr[datMat[:, dimen] <= threshVal] = -1.0 # 小于阈值的列都为-1
else:
retArr[datMat[:, dimen] > threshVal] = -1.0 # 大于阈值的列都为-1
# print "---------retArr------------"
# print retArr
return retArr

def buildStump(self, dataArr, classLables, D):
"""
单层决策树生成函数
"""
dataMatrix = mat(dataArr)
lableMat = mat(classLables).T
m, n = shape(dataMatrix)
numSteps = 10.0 # 步数,影响的是迭代次数,步长
bestStump = {} # 存储分类器的信息
bestClassEst = mat(zeros((m, 1))) # 最好的分类器
minError = inf # 迭代寻找最小错误率
for i in range(n):
# 求出每一列数据的最大最小值计算步长
rangeMin = dataMatrix[:, i].min()
rangeMax = dataMatrix[:, i].max()
stepSize = (rangeMax - rangeMin) / numSteps
# j唯一的作用用步数去生成阈值,从最小值大最大值都与数据比较一边了一遍
for j in range(-1, int(numSteps) + 1):
threshVal = rangeMin + float(j) * stepSize # 阈值
for inequal in ['lt', 'gt']:
predictedVals = self.stumpClassify(
dataMatrix, i, threshVal, inequal)
errArr = mat(ones((m, 1)))
errArr[predictedVals == lableMat] = 0 # 为1的 表示i分错的
weightedError = D.T * errArr # 分错的个数*权重(开始权重=1/M行)
# print "split: dim %d, thresh %.2f, thresh ineqal:\
#%s,the weighted error is %.3f" % (i, threshVal, inequal, weightedError)
if weightedError < minError: # 寻找最小的加权错误率然后保存当前的信息
minError = weightedError
bestClassEst = predictedVals.copy() # 分类结果
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
# print bestStump
# print minError
# print bestClassEst # 类别估计
return bestStump, minError, bestClassEst

def adaBoostingDs(self, dataArr, classLables, numIt=40):
"""
基于单层决策树的AdaBoosting训练过程:
"""
weakClassArr = [] # 最佳决策树数组
m = shape(dataArr)[0]
D = mat(ones((m, 1)) / m)
aggClassEst = mat(zeros((m, 1)))
for i in range(numIt):
bestStump, minError, bestClassEst = self.buildStump(
dataArr, classLables, D)
print "bestStump:", bestStump
print "D:", D.T
alpha = float(
0.5 * log((1.0 - minError) / max(minError, 1e-16)))
bestStump['alpha'] = alpha
weakClassArr.append(bestStump)
print "alpha:", alpha
print "classEst:", bestClassEst.T # 类别估计

expon = multiply(-1 * alpha * mat(classLables).T, bestClassEst)
D = multiply(D, exp(expon))
D = D / D.sum()

aggClassEst += alpha * bestClassEst
print "aggClassEst ;", aggClassEst.T
# 累加错误率
aggErrors = multiply(sign(aggClassEst) !=
mat(classLables).T, ones((m, 1)))
# 错误率平均值
errorsRate = aggErrors.sum() / m
print "total error:", errorsRate, "\n"
if errorsRate == 0.0:
break
print "weakClassArr:", weakClassArr
return weakClassArr

def adClassify(self, datToClass, classifierArr):
"""
预测分类:
datToClass:待分类数据
classifierArr: 训练好的分类器数组
"""
dataMatrix = mat(datToClass)
m = shape(dataMatrix)[0]
aggClassEst = mat(zeros((m, 1)))
print
for i in range(len(classifierArr)): # 有多少个分类器迭代多少次
# 调用第一个分类器进行分类
classEst = self.stumpClassify(dataMatrix, classifierArr[i]['dim'],
classifierArr[i]['thresh'],
classifierArr[i]['ineq']
)
# alpha 表示每个分类器的权重,
print classEst
aggClassEst += classifierArr[i]['alpha'] * classEst
print aggClassEst
return sign(aggClassEst)


if __name__ == "__main__":
adaboosting = Adaboosting()
D = mat(ones((5, 1)) / 5)
dataMat, lableMat = adaboosting.loadSimpData()
# 训练分类器
classifierArr = adaboosting.adaBoostingDs(dataMat, lableMat, 40)
# 预测数据
result = adaboosting.adClassify([0, 0], classifierArr)
print result

推荐 1
本文由 郭昱良 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。

0 个评论

要回复文章请先登录注册